結果

問題 No.2166 Paint and Fill
ユーザー maspymaspy
提出日時 2023-01-06 16:41:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 5,679 ms / 10,000 ms
コード長 51,306 bytes
コンパイル時間 11,161 ms
コンパイル使用メモリ 354,616 KB
実行使用メモリ 61,324 KB
最終ジャッジ日時 2024-11-30 12:04:06
合計ジャッジ時間 120,957 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,368 ms
14,156 KB
testcase_01 AC 574 ms
16,612 KB
testcase_02 AC 1,880 ms
57,660 KB
testcase_03 AC 1,372 ms
14,768 KB
testcase_04 AC 1,369 ms
14,668 KB
testcase_05 AC 1,364 ms
14,772 KB
testcase_06 AC 1,363 ms
14,772 KB
testcase_07 AC 1,364 ms
14,768 KB
testcase_08 AC 2,196 ms
14,912 KB
testcase_09 AC 2,198 ms
14,904 KB
testcase_10 AC 2,198 ms
15,068 KB
testcase_11 AC 2,200 ms
15,144 KB
testcase_12 AC 2,200 ms
15,420 KB
testcase_13 AC 4,557 ms
18,432 KB
testcase_14 AC 4,578 ms
18,432 KB
testcase_15 AC 4,571 ms
18,240 KB
testcase_16 AC 4,557 ms
18,632 KB
testcase_17 AC 4,560 ms
18,176 KB
testcase_18 AC 3,707 ms
35,556 KB
testcase_19 AC 3,714 ms
34,908 KB
testcase_20 AC 3,717 ms
59,364 KB
testcase_21 AC 5,679 ms
59,516 KB
testcase_22 AC 3,503 ms
61,324 KB
testcase_23 AC 2,919 ms
59,664 KB
testcase_24 AC 2,923 ms
59,792 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2,022 ms
16,608 KB
testcase_28 AC 2,661 ms
16,616 KB
testcase_29 AC 2,400 ms
16,612 KB
testcase_30 AC 2,684 ms
16,612 KB
testcase_31 AC 2,737 ms
16,612 KB
testcase_32 AC 2,748 ms
16,484 KB
testcase_33 AC 2,723 ms
16,612 KB
testcase_34 AC 2,705 ms
16,620 KB
testcase_35 AC 2,777 ms
16,616 KB
testcase_36 AC 2,794 ms
16,608 KB
testcase_37 AC 2,768 ms
16,608 KB
testcase_38 AC 2,765 ms
16,612 KB
testcase_39 AC 2,775 ms
16,616 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/2166"

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"

template <int mod>
struct modint {
  int val;
  constexpr modint(ll x = 0) noexcept {
    if (0 <= x && x < mod)
      val = x;
    else {
      x %= mod;
      val = (x < 0 ? x + mod : x);
    }
  }
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(-val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(int64_t n) const {
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() {
    ll x;
    fastio::scanner.read(x);
    if (x < 0 || x >= mod) x %= mod;
    if (x < 0) x += mod;
    val += x;
  }
  static constexpr int get_mod() { return mod; }
};

struct ArbitraryModInt {
  static constexpr bool is_modint = true;
  int val;
  ArbitraryModInt() : val(0) {}
  ArbitraryModInt(int64_t y)
      : val(y >= 0 ? y % get_mod()
                   : (get_mod() - (-y) % get_mod()) % get_mod()) {}
  bool operator<(const ArbitraryModInt &other) const {
    return val < other.val;
  } // To use std::map<ArbitraryModInt, T>
  static int &get_mod() {
    static int mod = 0;
    return mod;
  }
  static void set_mod(int md) { get_mod() = md; }
  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if ((val += p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    long long a = (long long)val * p.val;
    int xh = (int)(a >> 32), xl = (int)a, d, m;
    asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
    val = m;
    return *this;
  }
  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
  ArbitraryModInt operator+(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) += p;
  }
  ArbitraryModInt operator-(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) -= p;
  }
  ArbitraryModInt operator*(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) *= p;
  }
  ArbitraryModInt operator/(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) /= p;
  }
  bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
  bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
  ArbitraryModInt inverse() const {
    int a = val, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }
  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    auto q = (mod + k - 1) / k;
    int r = k * q - mod;
    dat.emplace_back(dat[r] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n);
  if (n >= mod) return 0;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * mint(k));
  }
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(-1 <= n && n < mod);
  if (n == -1) return mint(0);
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * inv<mint>(k));
  }
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;

  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };

  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) { x *= mint(n - i); }
  x *= fact_inv<mint>(k);
  return x;
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 2 "library/poly/from_log_differentiation.hpp"

#line 2 "library/linalg/mat_mul.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T&& x) -> decltype(x.get_mod(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<vc<T>> mat_mul(const vc<vc<T>>& A, const vc<vc<T>>& B) {
  const int mod = T::get_mod();
  auto N = len(A), M = len(B), K = len(B[0]);
  vv(int, b, K, M);
  FOR(i, M) FOR(j, K) b[j][i] = B[i][j].val;
  vv(T, C, N, K);
  FOR(i, N) {
    FOR(j, K) {
      i128 sm = 0;
      FOR(m, M) { sm += ll(A[i][m].val) * b[j][m]; }
      C[i][j] = sm % mod;
    }
  }
  return C;
}

template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<vc<T>> mat_mul(const vc<vc<T>>& A, const vc<vc<T>>& B) {
  auto N = len(A), M = len(B), K = len(B[0]);
  vv(T, C, N, K);
  FOR(n, N) FOR(m, M) FOR(k, K) C[n][k] += A[n][m] * B[m][k];
  return C;
}
#line 2 "library/alg/monoid/mul.hpp"

template <class T>
struct Monoid_Mul {
  using value_type = T;
  using X = T;
  static constexpr X op(const X &x, const X &y) noexcept { return x * y; }
  static constexpr X inverse(const X &x) noexcept { return X(1) / x; }
  static constexpr X unit() { return X(1); }
  static constexpr bool commute = true;
};
#line 1 "library/ds/sliding_window_aggregation.hpp"
template <class Monoid>
struct Sliding_Window_Aggregation {
  using X = typename Monoid::value_type;
  using value_type = X;
  int sz = 0;
  vc<X> dat;
  vc<X> cum_l;
  X cum_r;

  Sliding_Window_Aggregation()
      : cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {}

  int size() { return sz; }

  void push(X x) {
    ++sz;
    cum_r = Monoid::op(cum_r, x);
    dat.eb(x);
  }

  void pop() {
    --sz;
    cum_l.pop_back();
    if (len(cum_l) == 0) {
      cum_l = {Monoid::unit()};
      cum_r = Monoid::unit();
      while (len(dat) > 1) {
        cum_l.eb(Monoid::op(dat.back(), cum_l.back()));
        dat.pop_back();
      }
      dat.pop_back();
    }
  }

  X lprod() { return cum_l.back(); }
  X rprod() { return cum_r; }

  X prod() { return Monoid::op(cum_l.back(), cum_r); }

  void debug() {
    print("swag");
    print("dat", dat);
    print("cum_l", cum_l);
    print("cum_r", cum_r);
  }
};

// 定数倍は目に見えて遅くなるので、queue でよいときは使わない
template <class Monoid>
struct SWAG_deque {
  using X = typename Monoid::value_type;
  using value_type = X;
  int sz;
  vc<X> dat_l, dat_r;
  vc<X> cum_l, cum_r;

  SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {}

  int size() { return sz; }

  void push_back(X x) {
    ++sz;
    dat_r.eb(x);
    cum_r.eb(Monoid::op(cum_r.back(), x));
  }

  void push_front(X x) {
    ++sz;
    dat_l.eb(x);
    cum_l.eb(Monoid::op(x, cum_l.back()));
  }

  void push(X x) { push_back(x); }

  void clear() {
    sz = 0;
    dat_l.clear(), dat_r.clear();
    cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()};
  }

  void pop_front() {
    if (sz == 1) return clear();
    if (dat_l.empty()) rebuild();
    --sz;
    dat_l.pop_back();
    cum_l.pop_back();
  }

  void pop_back() {
    if (sz == 1) return clear();
    if (dat_r.empty()) rebuild();
    --sz;
    dat_r.pop_back();
    cum_r.pop_back();
  }

  void pop() { pop_front(); }

  X lprod() { return cum_l.back(); }
  X rprod() { return cum_r.back(); }
  X prod() { return Monoid::op(cum_l.back(), cum_r.back()); }
  X prod_all() { return prod(); }

  void debug() {
    print("swag");
    print("dat_l", dat_l);
    print("dat_r", dat_r);
    print("cum_l", cum_l);
    print("cum_r", cum_r);
  }

private:
  void rebuild() {
    vc<X> X;
    FOR_R(i, len(dat_l)) X.eb(dat_l[i]);
    X.insert(X.end(), all(dat_r));
    clear();
    int m = len(X) / 2;
    FOR_R(i, m) push_front(X[i]);
    FOR(i, m, len(X)) push_back(X[i]);
    assert(sz == len(X));
  }
};
#line 2 "library/mod/mod_inv.hpp"
// long でも大丈夫
ll mod_inv(ll val, ll mod) {
  val %= mod;
  if (val < 0) val += mod;
  ll a = val, b = mod, u = 1, v = 0, t;
  while (b > 0) {
    t = a / b;
    swap(a -= t * b, b), swap(u -= t * v, v);
  }
  if (u < 0) u += mod;
  return u;
}
#line 1 "library/poly/convolution_naive.hpp"
template <class T>
vector<T> convolution_naive(const vector<T>& a, const vector<T>& b) {
  int n = int(a.size()), m = int(b.size());
  vector<T> ans(n + m - 1);
  if (n < m) {
    FOR(j, m) FOR(i, n) ans[i + j] += a[i] * b[j];
  } else {
    FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
  }
  return ans;
}
#line 2 "library/poly/ntt.hpp"

template <class mint>
struct ntt_info {
  static constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
  }

  static constexpr int rank2 = bsf_constexpr(mint::get_mod() - 1);
  array<mint, rank2 + 1> root;
  array<mint, rank2 + 1> iroot;
  array<mint, max(0, rank2 - 1)> rate2;
  array<mint, max(0, rank2 - 1)> irate2;
  array<mint, max(0, rank2 - 2)> rate3;
  array<mint, max(0, rank2 - 2)> irate3;

  ntt_info() {
    int g = primitive_root(mint::get_mod());
    root[rank2] = mint(g).pow((mint::get_mod() - 1) >> rank2);
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }

    {
      mint prod = 1, iprod = 1;
      for (int i = 0; i <= rank2 - 2; i++) {
        rate2[i] = root[i + 2] * prod;
        irate2[i] = iroot[i + 2] * iprod;
        prod *= iroot[i + 2];
        iprod *= root[i + 2];
      }
    }
    {
      mint prod = 1, iprod = 1;
      for (int i = 0; i <= rank2 - 3; i++) {
        rate3[i] = root[i + 3] * prod;
        irate3[i] = iroot[i + 3] * iprod;
        prod *= iroot[i + 3];
        iprod *= root[i + 3];
      }
    }
  }

  constexpr int primitive_root(int m) {
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 880803841) return 26;
    if (m == 998244353) return 3;
    if (m == 924844053) return 5;
    return -1;
  }
};

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  static const ntt_info<mint> info;
  if (!inverse) {
    int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= info.rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = info.root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            auto mod2 = 1ULL * mint::get_mod() * mint::get_mod();
            auto a0 = 1ULL * a[i + offset].val;
            auto a1 = 1ULL * a[i + offset + p].val * rot.val;
            auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val;
            auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val;
            auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val * imag.val;
            auto na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= info.rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p];
            a[i + offset] = l + r;
            a[i + offset + p]
                = (unsigned long long)(mint::get_mod() + l.val - r.val)
                  * irot.val;
            ;
          }
          irot *= info.irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = info.iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            auto a0 = 1ULL * a[i + offset + 0 * p].val;
            auto a1 = 1ULL * a[i + offset + 1 * p].val;
            auto a2 = 1ULL * a[i + offset + 2 * p].val;
            auto a3 = 1ULL * a[i + offset + 3 * p].val;

            auto a2na3iimag
                = 1ULL * mint((mint::get_mod() + a2 - a3) * iimag.val).val;

            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p]
                = (a0 + (mint::get_mod() - a1) + a2na3iimag) * irot.val;
            a[i + offset + 2 * p]
                = (a0 + a1 + (mint::get_mod() - a2) + (mint::get_mod() - a3))
                  * irot2.val;
            a[i + offset + 3 * p]
                = (a0 + (mint::get_mod() - a1) + (mint::get_mod() - a2na3iimag))
                  * irot3.val;
          }
          irot *= info.irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 1 "library/poly/fft.hpp"
namespace CFFT {
using real = double;

struct C {
  real x, y;

  C() : x(0), y(0) {}

  C(real x, real y) : x(x), y(y) {}
  inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
  inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
  inline C operator*(const C& c) const {
    return C(x * c.x - y * c.y, x * c.y + y * c.x);
  }

  inline C conj() const { return C(x, -y); }
};

const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};

void ensure_base(int nbase) {
  if (nbase <= base) return;
  rev.resize(1 << nbase);
  rts.resize(1 << nbase);
  for (int i = 0; i < (1 << nbase); i++) {
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
  }
  while (base < nbase) {
    real angle = PI * 2.0 / (1 << (base + 1));
    for (int i = 1 << (base - 1); i < (1 << base); i++) {
      rts[i << 1] = rts[i];
      real angle_i = angle * (2 * i + 1 - (1 << base));
      rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
    }
    ++base;
  }
}

void fft(vector<C>& a, int n) {
  assert((n & (n - 1)) == 0);
  int zeros = __builtin_ctz(n);
  ensure_base(zeros);
  int shift = base - zeros;
  for (int i = 0; i < n; i++) {
    if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
  }
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < n; i += 2 * k) {
      for (int j = 0; j < k; j++) {
        C z = a[i + j + k] * rts[j + k];
        a[i + j + k] = a[i + j] - z;
        a[i + j] = a[i + j] + z;
      }
    }
  }
}
} // namespace CFFT
#line 7 "library/poly/convolution.hpp"

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  int n = int(a.size()), m = int(b.size());
  int sz = 1;
  while (sz < n + m - 1) sz *= 2;

  // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
  if ((n + m - 3) <= sz / 2) {
    auto a_last = a.back(), b_last = b.back();
    a.pop_back(), b.pop_back();
    auto c = convolution(a, b);
    c.resize(n + m - 1);
    c[n + m - 2] = a_last * b_last;
    FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
    FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
    return c;
  }

  a.resize(sz), b.resize(sz);
  bool same = a == b;
  ntt(a, 0);
  if (same) {
    b = a;
  } else {
    ntt(b, 0);
  }
  FOR(i, sz) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  static const long long nttprimes[] = {754974721, 167772161, 469762049};
  using mint0 = modint<754974721>;
  using mint1 = modint<167772161>;
  using mint2 = modint<469762049>;
  vc<mint0> a0(n), b0(m);
  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
  FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
  auto c0 = convolution_ntt<mint0>(a0, b0);
  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
  static const long long m0_inv_m1 = mint1(nttprimes[0]).inverse().val;
  static const long long m01_inv_m2 = mint2(m01).inverse().val;
  static const int mod = mint::get_mod();
  auto garner = [&](mint0 x0, mint1 x1, mint2 x2) -> mint {
    int r0 = x0.val, r1 = x1.val, r2 = x2.val;
    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * mint2(m01_inv_m2);
    return mint(r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val);
  };
  vc<mint> c(len(c0));
  FOR(i, len(c)) c[i] = garner(c0[i], c1[i], c2[i]);
  return c;
}

template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
  using C = CFFT::C;
  int need = (int)a.size() + (int)b.size() - 1;
  int nbase = 1;
  while ((1 << nbase) < need) nbase++;
  CFFT::ensure_base(nbase);
  int sz = 1 << nbase;
  vector<C> fa(sz);
  for (int i = 0; i < sz; i++) {
    int x = (i < (int)a.size() ? a[i] : 0);
    int y = (i < (int)b.size() ? b[i] : 0);
    fa[i] = C(x, y);
  }
  CFFT::fft(fa, sz);
  C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
  for (int i = 0; i <= (sz >> 1); i++) {
    int j = (sz - i) & (sz - 1);
    C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
    fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
    fa[i] = z;
  }
  for (int i = 0; i < (sz >> 1); i++) {
    C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
    C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
    fa[i] = A0 + A1 * s;
  }
  CFFT::fft(fa, sz >> 1);
  vector<double> ret(need);
  for (int i = 0; i < need; i++) {
    ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
  }
  return ret;
}

vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 60) return convolution_naive(a, b);
  ll abs_sum_a = 0, abs_sum_b = 0;
  ll LIM = 1e15;
  FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
  FOR(i, n) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
  if (i128(abs_sum_a) * abs_sum_b < 1e15) {
    vc<double> c = convolution_fft<ll>(a, b);
    vc<ll> res(len(c));
    FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
    return res;
  }

  static constexpr unsigned long long MOD1 = 754974721; // 2^24
  static constexpr unsigned long long MOD2 = 167772161; // 2^25
  static constexpr unsigned long long MOD3 = 469762049; // 2^26
  static constexpr unsigned long long M2M3 = MOD2 * MOD3;
  static constexpr unsigned long long M1M3 = MOD1 * MOD3;
  static constexpr unsigned long long M1M2 = MOD1 * MOD2;
  static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

  static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
  static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
  static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);

  using mint1 = modint<MOD1>;
  using mint2 = modint<MOD2>;
  using mint3 = modint<MOD3>;

  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  vc<mint3> a3(n), b3(m);
  FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
  FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];

  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  auto c3 = convolution_ntt<mint3>(a3, b3);

  vc<ll> c(n + m - 1);
  FOR(i, n + m - 1) {
    u64 x = 0;
    x += (c1[i].val * i1) % MOD1 * M2M3;
    x += (c2[i].val * i2) % MOD2 * M1M3;
    x += (c3[i].val * i3) % MOD3 * M1M2;
    ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
    if (diff < 0) diff += MOD1;
    static constexpr unsigned long long offset[5]
        = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
    x -= offset[diff % 5];
    c[i] = x;
  }
  return c;
}

template <typename mint>
enable_if_t<is_same<mint, modint998>::value, vc<mint>> convolution(
    const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 60) return convolution_naive(a, b);
  return convolution_ntt(a, b);
}

template <typename mint>
enable_if_t<!is_same<mint, modint998>::value, vc<mint>> convolution(
    const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 60) return convolution_naive(a, b);
  return convolution_garner(a, b);
}
#line 5 "library/poly/lagrange_interpolate_iota.hpp"

// Input: f(0), ..., f(n-1) and c, m
// Return: f(c), f(c+1), ..., f(c+m-1)
// Complexity: M(n, n + m)
template <typename mint>
vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) {
  if (m <= 60) {
    vc<mint> ANS(m);
    FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i));
    return ANS;
  }
  ll n = len(f);
  auto a = f;
  FOR(i, n) {
    a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i);
    if ((n - 1 - i) & 1) a[i] = -a[i];
  }
  // x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく
  vc<mint> b(n + m - 1);
  FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1));
  a = convolution(a, b);

  Sliding_Window_Aggregation<Monoid_Mul<mint>> swag;
  vc<mint> ANS(m);
  ll L = 0, R = 0;
  FOR(i, m) {
    while (L < i) { swag.pop(), ++L; }
    while (R - L < n) { swag.push(c + mint((R++) - n + 1)); }
    auto coef = swag.prod();
    if (coef == 0) {
      ANS[i] = f[(c + i).val];
    } else {
      ANS[i] = a[i + n - 1] * coef;
    }
  }
  return ANS;
}

// Input: f(0), ..., f(n-1) and c
// Return: f(c)
// Complexity: O(n)
template <typename mint>
mint lagrange_interpolate_iota(vc<mint> &f, mint c) {
  int n = len(f);
  if (int(c.val) < n) return f[c.val];
  auto a = f;
  FOR(i, n) {
    a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i);
    if ((n - 1 - i) & 1) a[i] = -a[i];
  }
  vc<mint> lp(n + 1), rp(n + 1);
  lp[0] = rp[n] = 1;
  FOR(i, n) lp[i + 1] = lp[i] * (c - i);
  FOR_R(i, n) rp[i] = rp[i + 1] * (c - i);
  mint ANS = 0;
  FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1];
  return ANS;
}
#line 4 "library/poly/prefix_product_of_poly.hpp"

// A[k-1]...A[0] を計算する
// アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs
// 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp
template <typename T>
vc<vc<T>> prefix_product_of_poly_matrix(vc<vc<vc<T>>>& A, ll k) {
  int n = len(A);

  using MAT = vc<vc<T>>;
  auto shift = [&](vc<MAT>& G, T x) -> vc<MAT> {
    int d = len(G);
    vvv(T, H, d, n, n);
    FOR(i, n) FOR(j, n) {
      vc<T> g(d);
      FOR(l, d) g[l] = G[l][i][j];
      auto h = lagrange_interpolate_iota(g, x, d);
      FOR(l, d) H[l][i][j] = h[l];
    }
    return H;
  };

  auto evaluate = [&](vc<T>& f, T x) -> T {
    T res = 0;
    T p = 1;
    FOR(i, len(f)) {
      res += f[i] * p;
      p *= x;
    }
    return res;
  };

  ll deg = 1;
  FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1);

  vc<MAT> G(deg + 1);
  ll v = 1;
  while (deg * v * v < k) v *= 2;
  T iv = T(1) / T(v);

  FOR(i, len(G)) {
    T x = T(v) * T(i);
    vv(T, mat, n, n);
    FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x);
    G[i] = mat;
  }

  for (ll w = 1; w != v; w *= 2) {
    T W = w;
    auto G1 = shift(G, W * iv);
    auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv);
    auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv);
    FOR(i, w * deg + 1) {
      G[i] = mat_mul(G1[i], G[i]);
      G2[i] = mat_mul(G3[i], G2[i]);
    }
    copy(G2.begin(), G2.end() - 1, back_inserter(G));
  }

  vv(T, res, n, n);
  FOR(i, n) res[i][i] = 1;
  ll i = 0;
  while (i + v <= k) res = mat_mul(G[i / v], res), i += v;
  while (i < k) {
    vv(T, mat, n, n);
    FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i);
    res = mat_mul(mat, res);
    ++i;
  }
  return res;
}

// f[k-1]...f[0] を計算する
template <typename T>
T prefix_product_of_poly(vc<T>& f, ll k) {
  vc<vc<vc<T>>> A(1);
  A[0].resize(1);
  A[0][0] = f;
  auto res = prefix_product_of_poly_matrix(A, k);
  return res[0][0];
}
#line 2 "library/seq/kth_term_of_p_recursive.hpp"

// a0, ..., a_{r-1} および f_0, ..., f_r を与える
// a_r f_0(0) + a_{r-1}f_1(0) + ... = 0
// a_{r+1} f_0(1) + a_{r}f_1(1) + ... = 0
template <typename T>
T kth_term_of_p_recursive(vc<T> a, vc<vc<T>>& fs, ll k) {
  int r = len(a);
  assert(len(fs) == r + 1);
  if (k < r) return a[k];

  vc<vc<vc<T>>> A;
  A.resize(r);
  FOR(i, r) A[i].resize(r);
  FOR(i, r) {
    // A[0][i] = -fs[i + 1];
    for (auto&& x: fs[i + 1]) A[0][i].eb(-x);
  }
  FOR3(i, 1, r) A[i][i - 1] = fs[0];
  vc<T> den = fs[0];
  auto res = prefix_product_of_poly_matrix(A, k - r + 1);
  reverse(all(a));
  T ANS = 0;
  FOR(j, r) ANS += res[0][j] * a[j];
  ANS /= prefix_product_of_poly(den, k - r + 1);
  return ANS;
}
#line 4 "library/poly/from_log_differentiation.hpp"

// 対数微分 F'/F = a(x)/b(x) から F を復元する。
// a, b が sparse であれば、O(N(K1+K2)) 時間でできる
template <typename mint>
vc<mint> from_log_differentiation(int N, const vc<mint>& a, const vc<mint>& b) {
  assert(b[0] == mint(1));
  using P = pair<int, mint>;

  vc<P> dat_a, dat_b;
  FOR(i, len(a)) if (a[i] != mint(0)) dat_a.eb(i, a[i]);
  FOR(i, 1, len(b)) if (b[i] != mint(0)) dat_b.eb(i, b[i]);

  vc<mint> f(N + 1);
  vc<mint> df(N);
  f[0] = mint(1);
  FOR(n, N) {
    mint v = 0;
    for (auto&& [i, bi]: dat_b) {
      if (i > n) break;
      v -= bi * df[n - i];
    }
    for (auto&& [i, ai]: dat_a) {
      if (i > n) break;
      v += ai * f[n - i];
    }
    df[n] = v;
    f[n + 1] = df[n] * inv<mint>(n + 1);
  }
  return f;
}

// F'/F = a/b の解の、[x^K]F を求める。右辺は低次の有理式。
template <typename mint>
mint from_log_differentiation_kth(int K, vc<mint>& a, vc<mint>& b) {
  assert(b[0] == mint(1));
  int r = max(len(a), len(b) - 1);
  vvc<mint> c(r + 1);
  FOR(i, r + 1) {
    mint c0 = 0, c1 = 0;
    if (i < len(b)) c0 += mint(r - i) * b[i];
    if (i < len(b)) c1 += b[i];
    if (0 <= i - 1 && i - 1 < len(b)) c0 -= a[i - 1];
    c[i] = {c0, c1};
  }
  auto f = from_log_differentiation(r - 1, a, b);
  mint ANS = kth_term_of_p_recursive(f, c, K);
  return ANS;
}
#line 2 "library/poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
  int t = 0;
  FOR(i, len(f)) if(f[i] != mint(0)) ++t;
  return t;
}
#line 4 "library/poly/fps_inv.hpp"

template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
  assert(f[0] != mint(0));
  int N = len(f);
  vc<pair<int, mint>> dat;
  FOR3(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
  vc<mint> g(N);
  mint g0 = mint(1) / f[0];
  g[0] = g0;
  FOR3(n, 1, N) {
    mint rhs = 0;
    for (auto&& [k, fk]: dat) {
      if (k > n) break;
      rhs -= fk * g[n - k];
    }
    g[n] = rhs * g0;
  }
  return g;
}

template <typename mint>
enable_if_t<is_same<mint, modint998>::value, vc<mint>> fps_inv_dense(
    const vc<mint>& F) {
  assert(F[0] != mint(0));
  vc<mint> G = {mint(1) / F[0]};
  G.reserve(len(F));
  ll N = len(F), n = 1;
  while (n < N) {
    vc<mint> f(2 * n), g(2 * n);
    FOR(i, min(N, 2 * n)) f[i] = F[i];
    FOR(i, n) g[i] = G[i];
    ntt(f, false);
    ntt(g, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR(i, n) f[i] = 0;
    ntt(f, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR3(i, n, 2 * n) G.eb(f[i] * mint(-1));
    n *= 2;
  }
  G.resize(N);
  return G;
}

template <typename mint>
enable_if_t<!is_same<mint, modint998>::value, vc<mint>> fps_inv_dense(
    const vc<mint>& F) {
  int N = len(F);
  assert(F[0] != mint(0));
  vc<mint> R = {mint(1) / F[0]};
  vc<mint> p;
  int m = 1;
  while (m < N) {
    p = convolution(R, R);
    p.resize(m + m);
    vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
    p = convolution(p, f);
    R.resize(m + m);
    FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
    m += m;
  }
  R.resize(N);
  return R;
}


template <typename mint>
enable_if_t<is_same<mint, modint998>::value, vc<mint>> fps_inv(
    const vc<mint>& f) {
  if (count_terms(f) <= 200) return fps_inv_sparse<mint>(f);
  return fps_inv_dense<mint>(f);
}

template <typename mint>
enable_if_t<!is_same<mint, modint998>::value, vc<mint>> fps_inv(
    const vc<mint>& f) {
  if (count_terms(f) <= 700) return fps_inv_sparse<mint>(f);
  return fps_inv_dense<mint>(f);
}
#line 2 "library/poly/multipoint.hpp"

template <typename mint>
struct SubproductTree {
  int m;
  int sz;
  vc<vc<mint>> T;
  SubproductTree(const vc<mint>& x) {
    m = len(x);
    sz = 1;
    while (sz < m) sz *= 2;
    T.resize(2 * sz);
    FOR(i, sz) T[sz + i] = {1, (i < m ? -x[i] : 0)};
    FOR3_R(i, 1, sz) T[i] = convolution(T[2 * i], T[2 * i + 1]);
  }

  vc<mint> mid_prod(vc<mint>& a, vc<mint>& b) {
    assert(len(a) >= len(b) && !b.empty());
    if (min(len(b), len(a) - len(b) + 1) <= 60) {
      vc<mint> res(len(a) - len(b) + 1);
      FOR(i, len(res)) FOR(j, len(b)) res[i] += b[j] * a[i + j];
      return res;
    }
    int n = 1 << std::__lg(2 * len(a) - 1);
    vc<mint> fa(n), fb(n);
    std::copy(a.begin(), a.end(), fa.begin());
    std::copy(b.rbegin(), b.rend(), fb.begin());
    ntt(fa, 0), ntt(fb, 0);
    FOR(i, n) fa[i] *= fb[i];
    ntt(fa, 1);
    fa.resize(len(a));
    fa.erase(fa.begin(), fa.begin() + len(b) - 1);
    return fa;
  }

  vc<mint> evaluation(vc<mint> f) {
    int n = len(f);
    if (n == 0) return vc<mint>(m, mint(0));
    f.resize(2 * n - 1);
    vc<vc<mint>> g(2 * sz);
    g[1] = T[1];
    g[1].resize(n);
    g[1] = fps_inv(g[1]);
    g[1] = mid_prod(f, g[1]);
    g[1].resize(sz);

    FOR3(i, 1, sz) {
      g[2 * i] = mid_prod(g[i], T[2 * i + 1]);
      g[2 * i + 1] = mid_prod(g[i], T[2 * i]);
    }
    vc<mint> vals(m);
    FOR(i, m) vals[i] = g[sz + i][0];
    return vals;
  }

  vc<mint> interpolation(vc<mint>& y) {
    assert(len(y) == m);
    vc<mint> a(m);
    FOR(i, m) a[i] = T[1][m - i - 1] * (i + 1);

    a = evaluation(a);
    vc<vc<mint>> t(2 * sz);
    FOR(i, sz) t[sz + i] = {(i < m ? y[i] / a[i] : 0)};
    FOR3_R(i, 1, sz) {
      t[i] = convolution(t[2 * i], T[2 * i + 1]);
      auto tt = convolution(t[2 * i + 1], T[2 * i]);
      FOR(k, len(t[i])) t[i][k] += tt[k];
    }
    t[1].resize(m);
    reverse(all(t[1]));
    return t[1];
  }
};

template <typename mint>
vc<mint> multipoint_eval(vc<mint>& f, vc<mint>& x) {
  if (x.empty()) return {};
  SubproductTree<mint> F(x);
  return F.evaluation(f);
}

template <typename mint>
vc<mint> multipoint_interpolate(vc<mint>& x, vc<mint>& y) {
  if (x.empty()) return {};
  SubproductTree<mint> F(x);
  return F.interpolation(y);
}

// calculate f(ar^k) for 0 <= k < m
// https://noshi91.github.io/algorithm-encyclopedia/chirp-z-transform#noredirect
template <typename mint>
vc<mint> multipoint_eval_on_geom_seq(vc<mint> f, mint a, mint r, int m) {
  const int n = len(f);
  assert(r != mint(0));
  // a == 1 に帰着
  mint pow_a = 1;
  FOR(i, n) f[i] *= pow_a, pow_a *= a;

  auto calc = [&](mint r, int m) -> vc<mint> {
    // r^{t_i} の計算
    vc<mint> res(m);
    mint pow = 1;
    res[0] = 1;
    FOR(i, m - 1) {
      res[i + 1] = res[i] * pow;
      pow *= r;
    }
    return res;
  };

  vc<mint> A = calc(r, n + m - 1), B = calc(r.inverse(), max(n, m));
  FOR(i, n) f[i] *= B[i];
  reverse(all(f));
  f = convolution(f, A);
  f = {f.begin() + n - 1, f.end()};
  f.resize(m);
  FOR(i, m) f[i] *= B[i];
  return f;
}
#line 8 "main.cpp"

const int mod = 998244353;

using mint = modint998;
using poly = vc<mint>;

using MAT = array<array<poly, 2>, 2>;

struct Mono {
  using value_type = MAT;
  using X = value_type;
  static X op(X x, X y) {
    // これは Nlog^2N なので、雑で大丈夫 → そうでもない説
    int nx = 0, ny = 0;
    FOR(i, 2) FOR(j, 2) chmax(nx, len(x[i][j]));
    FOR(i, 2) FOR(j, 2) chmax(ny, len(y[i][j]));
    int n = nx + ny - 1;
    int fft_len = 1;
    while (fft_len < n) fft_len *= 2;
    FOR(i, 2) FOR(j, 2) {
      x[i][j].resize(fft_len);
      ntt(x[i][j], false);
    }
    FOR(i, 2) FOR(j, 2) {
      y[i][j].resize(fft_len);
      ntt(y[i][j], false);
    }
    X z;
    FOR(i, 2) FOR(j, 2) z[i][j].resize(fft_len);

    FOR(i, 2) FOR(j, 2) FOR(k, 2) {
      FOR(p, fft_len) z[i][k][p] += x[i][j][p] * y[j][k][p];
    }
    FOR(i, 2) FOR(j, 2) {
      ntt(z[i][j], true);
      z[i][j].resize(n);
    }
    return z;
  }
  static X unit() {
    MAT x;
    x[0][0] = x[1][1] = {mint(1)};
    x[0][1] = x[1][0] = {};
    return x;
  }
  static constexpr bool commute = 0;
};

void solve_1(int Q) {
  VEC(pi, query, Q);

  auto make_mat = [&](ll K) -> MAT {
    MAT x;
    x[0][0] = {mint(-K - K), mint(2)};           // 2N-2K
    x[0][1] = {mint(-K * (K - 1) / 2), mint(K)}; // KN - K(K-1)/2
    x[1][0] = {mint(1)};
    x[1][1] = {};
    return x;
  };
  int MAX = 100'000;
  const int b_sz = 5010;
  const int b_num = ceil(MAX, b_sz) + 1;
  vvc<int> QID(b_num);
  FOR(q, Q) {
    auto [n, k] = query[q];
    QID[k / b_sz].eb(q);
  }

  auto prod_range = [&](int L, int R) -> MAT {
    assert(L < R);
    vc<MAT> dat(R - L);
    FOR(i, R - L) dat[i] = make_mat(L + i);
    reverse(all(dat));
    while (len(dat) > 1) {
      int n = len(dat);
      FOR(i, n) if (i % 2 == 1) { dat[i - 1] = Mono::op(dat[i - 1], dat[i]); }
      FOR(i, n) if (i % 2 == 0) dat[i / 2] = dat[i];
      dat.resize(ceil(n, 2));
    }
    return dat[0];
  };

  vc<mint> ANS(Q);

  MAT suffix_prod = Mono::unit();
  FOR(b, b_num) {
    // suffix_prod に必要なものたちを ME する
    vc<mint> X;
    for (auto&& q: QID[b]) { X.eb(query[q].fi); }
    if (len(X)) {
      SubproductTree<mint> ST(X);
      auto Y0 = ST.evaluation(suffix_prod[0][0]);
      auto Y1 = ST.evaluation(suffix_prod[1][0]);
      FOR(t, len(X)) {
        int qid = QID[b][t];
        auto [N, K] = query[qid];
        N %= mod;
        pi p = {Y0[t].val, Y1[t].val};
        FOR(k, b * b_sz, K) {
          ll c = k * (N + N - k + 1) / 2 % mod;
          p = {(2 * (N - k) * p.fi + c * p.se) % mod, p.fi};
        }
        ANS[qid] = p.fi;
      }
    }
    suffix_prod = Mono::op(prod_range(b * b_sz, b * b_sz + b_sz), suffix_prod);
  }
  FOR(q, Q) print(ANS[q]);
}

mint solve_2(ll N, ll K) {
  if (K >= mod) return 0;
  assert(K <= mod);
  poly f = {mint(2 * N), mint(N)};
  poly g = {mint(1), mint(2), inv<mint>(2)};

  mint fa = [&]() -> mint {
    vc<mint> f = {1, 1};
    return prefix_product_of_poly(f, K).val;
  }();

  mint ANS = fa * from_log_differentiation_kth(K, f, g);
  return ANS;
}

void solve() {
  INT(T);
  if (T <= 10) {
    FOR(T) {
      LL(N, K);
      print(solve_2(N, K));
    }
    return;
  }
  return solve_1(T);
}

signed main() {
  solve();
  return 0;
}
0