結果
問題 | No.2180 Comprehensive Line Segments |
ユーザー | ecottea |
提出日時 | 2023-01-06 23:45:19 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,459 bytes |
コンパイル時間 | 4,463 ms |
コンパイル使用メモリ | 243,092 KB |
実行使用メモリ | 415,616 KB |
最終ジャッジ日時 | 2024-05-07 23:44:57 |
合計ジャッジ時間 | 14,180 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 941 ms
415,488 KB |
testcase_04 | WA | - |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 902 ms
415,488 KB |
testcase_10 | AC | 913 ms
415,488 KB |
testcase_11 | AC | 926 ms
415,488 KB |
testcase_12 | AC | 308 ms
161,280 KB |
testcase_13 | AC | 913 ms
415,616 KB |
testcase_14 | AC | 897 ms
415,488 KB |
testcase_15 | AC | 897 ms
415,488 KB |
testcase_16 | AC | 41 ms
25,344 KB |
testcase_17 | AC | 115 ms
64,000 KB |
testcase_18 | AC | 910 ms
415,488 KB |
testcase_19 | AC | 308 ms
161,024 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 115 ms
64,128 KB |
testcase_22 | AC | 4 ms
6,944 KB |
testcase_23 | AC | 16 ms
11,264 KB |
testcase_24 | AC | 6 ms
6,940 KB |
testcase_25 | AC | 41 ms
25,344 KB |
testcase_26 | AC | 929 ms
415,488 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-12; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; //using mint = modint998244353; using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif //【平面上の点,二次元ベクトル】 /* * 平面における点/二次元ベクトルを表す構造体 * * Point<T>() : O(1) * (0, 0) で初期化する. * * Point<T>(T x, T y) : O(1) * (x, y) で初期化する. * * p1 == p2, p1 != p2, p1 < p2, p1 > p2, p1 <= p2, p1 >= p2 : O(1) * x 座標優先,次いで y 座標の大小比較を行う. * * p1 + p2, p1 - p2, c * p, p * c, p / c : O(1) * ベクトルとみなした加算,減算,スカラー倍,スカラー除算を行う.複合代入演算子も使用可. * * T sqnorm() : O(1) * 自身の 2 乗ノルムを返す. * * double norm() : O(1) * 自身のノルムを返す. * * Point<double> normalize() : O(1) * 自身を正規化したベクトルを返す. * * T dot(Point<T> p) : O(1) * 自身と p との内積を返す. * * T cross(Point<T> p) : O(1) * 自身と p との外積を返す. * * double angle(Point<T> p) : O(1) * 自身から p までの成す角度を返す. */ template <class T> struct Point { // 点の x 座標,y 座標 T x, y; // コンストラクタ Point() : x(0), y(0) {} Point(T x_, T y_) : x(x_), y(y_) {} // 代入 Point(const Point& old) = default; Point& operator=(const Point& other) = default; // キャスト operator Point<ll>() const { return Point<ll>((ll)x, (ll)y); } operator Point<double>() const { return Point<double>((double)x, (double)y); } // 入出力 friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is; } friend ostream& operator<<(ostream& os, const Point& p) { os << '(' << p.x << ',' << p.y << ')'; return os; } // 比較(x 座標優先) bool operator==(const Point& p) const { return x == p.x && y == p.y; } bool operator!=(const Point& p) const { return !(*this == p); } bool operator<(const Point& p) const { return x == p.x ? y < p.y : x < p.x; } bool operator>=(const Point& p) const { return !(*this < p); } bool operator>(const Point& p) const { return x == p.x ? y > p.y : x > p.x; } bool operator<=(const Point& p) const { return !(*this > p); } // 加算,減算,スカラー倍,スカラー除算 Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point operator+(const Point& p) const { Point q(*this); return q += p; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point operator-(const Point& p) const { Point q(*this); return q -= p; } Point& operator*=(const T& c) { x *= c; y *= c; return *this; } Point operator*(const T& c) const { Point q(*this); return q *= c; } Point& operator/=(const T& c) { x /= c; y /= c; return *this; } Point operator/(const T& c) const { Point q(*this); return q /= c; } friend Point operator*(const T& sc, const Point& p) { return p * sc; } Point operator-() const { Point a = *this; return a *= -1; } // 二乗ノルム,ノルム,正規化 T sqnorm() const { return x * x + y * y; } double norm() const { return sqrt((double)x * x + (double)y * y); } Point<double> normalize() const { return Point<double>(*this) / norm(); } // 内積,外積,成す角度 T dot(const Point& other) const { return x * other.x + y * other.y; } T cross(const Point& other) const { return x * other.y - y * other.x; } double angle(const Point& other) const { return atan2(this->cross(other), this->dot(other)); } }; //【平面内の直線,線分】 /* * {a, b} : 2 点 a, b を通る a → b 方向の有向直線を表す. * * その他,無向直線,有向線分,無向線分などを表すのにも用いる. */ template <class T> using Line = pair<Point<T>, Point<T>>; //【点と有向線分の位置関係】O(1) /* * 点 p と有向線分 s = a → b の位置関係を返す. * * 戻り値: * 1 : p が s の左側にある場合(a → b → p が反時計回り) * -1 : p が s の右側にある場合(a → b → p が時計回り) * 2 : p が s の b より前にある場合(a < b < p 順) * -2 : p が s の a より後ろにある場合(p < a < b 順) * 0 : p が s 上にある場合(a <= p <= b 順) */ template <typename T> inline int ccw(const Point<T>& p, const Line<T>& s) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C auto op = (s.second - s.first).cross(p - s.first); if (op > 0) { // p が s の左側にある return 1; } else if (op < 0) { // p が s の右側にある return -1; } else { if ((s.first - s.second).dot(p - s.second) < 0) { // p が s の前にある return 2; } else if ((s.second - s.first).dot(p - s.first) < 0) { // p が s の後ろにある return -2; } else { // p が s 上にある return 0; } } } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; vector<Point<ll>> p(n); cin >> p; if (n <= 2) EXIT(1); using vvvvi = vector<vvvi>; using vvvvvi = vector<vvvvi>; vvvvvi dp(1LL << n, vvvvi(n, vvvi(n, vvi(n, vi(2, INF))))); rep(i, n) rep(j, n) rep(k, n) { if (i == j || j == k || k == i) continue; if (ccw(p[k], { p[i], p[j] }) == 2) { chmin(dp[(1 << i) + (1 << j) + (1 << k)][i][j][k][0], 1); } chmin(dp[(1 << i) + (1 << j) + (1 << k)][i][j][k][1], 2); } repb(set, n) { if (popcount(set) <= 2) continue; rep(i, n) { if (!(set & (1 << i))) continue; rep(j, n) { if (i == j || !(set & (1 << j))) continue; rep(k, n) { if (i == k || j == k || !(set & (1 << k))) continue; rep(l, n) { if (i == l || j == l || k == l || (set & (1 << l))) continue; if (ccw(p[l], { p[j], p[k] }) == 2) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][0]); } chmin(dp[set + (1 << l)][j][k][l][1], dp[set][i][j][k][0] + 1); auto pj2 = p[k] + (p[j] - p[i]); if (ccw(p[k], { p[i], p[j] }) == 1) { if (ccw(p[l], { p[k], pj2 }) == 1) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][1]); } } else if (ccw(p[k], { p[i], p[j] }) == -1) { if (ccw(p[l], { p[k], pj2 }) == -1) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][1]); } } else if (ccw(p[k], { p[i], p[j] }) == 2) { if (ccw(p[l], { p[j], p[k] }) == 2) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][1]); } } else if (ccw(p[k], { p[i], p[j] }) == 0) { if (ccw(p[l], { p[j], p[k] }) == 2) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][1]); } } else if (ccw(p[k], { p[i], p[j] }) == -2) { if (ccw(p[l], { p[j], p[k] }) == 2) { chmin(dp[set + (1 << l)][j][k][l][0], dp[set][i][j][k][1]); } } chmin(dp[set + (1 << l)][j][k][l][1], dp[set][i][j][k][1] + 1); } } } } } int res = INF; rep(i, n) rep(j, n) rep(k, n) rep(b, 2) chmin(res, dp[(1 << n) - 1][i][j][k][b]); cout << res << endl; }