結果
| 問題 |
No.2176 LRM Question 1
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-01-07 22:31:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,382 bytes |
| コンパイル時間 | 2,906 ms |
| コンパイル使用メモリ | 224,948 KB |
| 最終ジャッジ日時 | 2025-02-10 01:05:25 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 13 WA * 9 |
ソースコード
// AUTHOR->DEV KUDAWLA
//-----------------------------------------
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> pbds; // find_by_order(it return an iterator), order_of_key
#define ll long long
#define in cin >>
#define out(a) cout << a << " "
#define ot cout <<
#define vt(T) vector<T>
#define vl vector<long long>
#define flp(a) for (auto &i : a)
#define endl cout << "\n";
#define pb push_back
#define db pop_back
#define rt return
#define even(a) a % 2 == 0
#define n_digit(n) (int)log10(n) + 1
#define msb(n) (int)(log2(n)) + 1
// it is 1 based
#define pll pair<ll, ll>
#define all(x) x.begin(), x.end()
#define lt(x) x.size()
#define ter(a, b, c) a ? b : c
#define yn(a) a ? ot "YES" : ot "NO"
#define ff first
#define ss second
#define str string
#define tbits(x) __builtin_popcountll(x)
#define LOCAL_COMPILER
#ifdef LOCAL_COMPILER
#define dbg(x) \
cerr << #x << " "; \
cerr << x << "\n";
#endif
#ifndef LOCAL_COMPILER
#define dbg(x)
#endif
//-----------------------------------------
template <class T>
void vin(T &v)
{
flp(v) { in i; }
}
template <class T>
void vin(set<T> &s, ll n)
{
for (int i = 0; i < n; i++)
{
T d;
in d;
s.insert(d);
}
}
template <class T>
void vin(multiset<T> &s, ll n)
{
for (int i = 0; i < n; i++)
{
T d;
in d;
s.insert(d);
}
}
template <class T1, class T2>
void vin(map<T1, T2> &m, ll n)
{
for (int i = 0; i < n; i++)
{
T1 a;
T2 b;
cin >> a;
cin >> b;
m[a] = b;
}
}
template <class T>
void vin(map<T, ll> &m, ll n)
{
for (int i = 0; i < n; i++)
{
T a;
cin >> a;
m[a]++;
}
}
template <class T>
void vout(T &v)
{
for (int i = 0; i < lt(v); i++)
{
ot(v[i]);
if (i != lt(v) - 1)
ot(" ");
}
}
inline ll power2(ll n)
{
ll answer = 0;
if (n != 0)
answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1;
return answer;
}
//-----------------------------------------
const ll N = 1e+9 + 7;
const ll N2 = 998244353;
const long double epsilon = 1e-9;
//-----------------------------------------
// modulo arithmetic
ll expo(ll a, ll b, ll mod)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
res = (res * a) % mod;
a = (a * a) % mod;
b = b >> 1;
}
return res;
}
ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); }
ll mod_add(ll a, ll b, ll m)
{
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
ll mod_mul(ll a, ll b, ll m)
{
a = a % m;
b = b % m;
return (((a * b) % m) + m) % m;
}
ll mod_sub(ll a, ll b, ll m)
{
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
ll mod_div(ll a, ll b, ll m)
{
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
} // only for prime m
ll ncr(ll n, ll r, ll mod = N)
{
ll answer = 0;
if (n >= r)
{
ll a = 1;
for (ll i = n; i >= n - r + 1; i--)
a = mod_mul(a, i, mod);
ll b = 1;
for (ll i = 1; i <= r; i++)
b = mod_mul(b, i, mod);
b = mminvprime(b, mod);
a = mod_mul(a, b, mod);
answer = a;
}
return answer;
}
ll factorial(ll n, ll mod = N)
{
ll answer = 1;
for (int i = 2; i <= n; i++)
answer = mod_mul(answer, i, mod);
return answer;
}
ll npr(ll n, ll r, ll mod = N)
{
ll answer = ncr(n, r, N) * factorial(r, N);
answer %= N;
return answer;
}
//-----------------------------------------
// KMP search
void computeLPSArray(string pat, ll M, ll lps[])
{
ll len = 0;
ll i = 1;
lps[0] = 0;
while (i < M)
{
if (pat[i] == pat[len])
{
len++;
lps[i] = len;
i++;
}
else
{
if (len != 0)
len = lps[len - 1];
else
{
lps[i] = len;
i++;
}
}
}
}
ll KMPSearch(string pat, string txt)
{
ll M = pat.length();
ll N = txt.length();
ll lps[M];
ll j = 0;
computeLPSArray(pat, M, lps);
ll i = 0;
ll res = 0;
ll next_i = 0;
while (i < N)
{
if (pat[j] == txt[i])
i++, j++;
if (j == M)
{
j = lps[j - 1];
res++;
}
else if (i < N && pat[j] != txt[i])
{
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return res;
} // O(M+N)
map<ll, ll> prime_factors(ll n)
{
map<ll, ll> answer;
ll a = n;
for (ll i = 2; i * i <= a; i++)
while (a % i == 0)
answer[i]++, a /= i;
if (a > 1)
answer[a]++;
return answer;
}
//-----------------------------------------
bool cmp(ll a, ll b) { rt a > b; }
bool (*function_ptr)(ll a, ll b) = cmp;
// this is a function pointer
//-----------------------------------------
const ll n_sieve = (1e7 + 9) + 1; // O(Nlog(log(N)))
vector<bool> prime_sieve(n_sieve, true);
void initialise_sieve(vector<bool> &prime_sieve)
{
prime_sieve[0] = false;
prime_sieve[1] = false;
for (ll i = 2; i < lt(prime_sieve); i++)
if (prime_sieve[i] == true)
for (ll j = 2; j * i < lt(prime_sieve); j++)
prime_sieve[j * i] = false;
}
//-----------------------------------------
// code starts here
//------------------------------------
void solve()
{
// always use 1LL for bit
// ---------------------------------------
// ll T; //->test cases
// cin >> T;
// while (T--)
// {
// endl;
// // code end here->
// }
ll l, r, m;
cin >> l >> r >> m;
if (l >= m)
{
ot 0;
return;
}
r = min(m, r);
ll f = 1;
ll p = 1;
ll ans = 0;
for (ll i = 1; i <= l; i++)
{
f = mod_mul(f, i, m);
p = mod_mul(p, f, m);
}
f = factorial(l);
ll answer = p;
for (ll i = l + 1; i <= r; i++)
{
f = mod_mul(f, i, m);
p = mod_mul(p, f, m);
answer += p;
}
ot answer;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
// -------------------------------------------
// initialise_sieve(prime_sieve);
//----------------------------------------
solve();
//----------------------------------------
return 0;
}
//-----------------------------------------