結果
問題 | No.2176 LRM Question 1 |
ユーザー | Dev Kudawla |
提出日時 | 2023-01-07 22:41:50 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,390 bytes |
コンパイル時間 | 3,970 ms |
コンパイル使用メモリ | 232,004 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-14 23:57:01 |
合計ジャッジ時間 | 5,528 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,820 KB |
testcase_02 | AC | 123 ms
6,820 KB |
testcase_03 | AC | 3 ms
6,816 KB |
testcase_04 | AC | 3 ms
6,820 KB |
testcase_05 | AC | 5 ms
6,816 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 3 ms
6,820 KB |
testcase_14 | AC | 124 ms
6,816 KB |
testcase_15 | AC | 100 ms
6,820 KB |
testcase_16 | AC | 80 ms
6,820 KB |
testcase_17 | AC | 6 ms
6,816 KB |
testcase_18 | AC | 3 ms
6,816 KB |
testcase_19 | AC | 3 ms
6,816 KB |
testcase_20 | AC | 3 ms
6,816 KB |
testcase_21 | AC | 52 ms
6,820 KB |
testcase_22 | AC | 7 ms
6,816 KB |
testcase_23 | AC | 45 ms
6,820 KB |
testcase_24 | AC | 3 ms
6,816 KB |
ソースコード
// AUTHOR->DEV KUDAWLA //----------------------------------------- #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> pbds; // find_by_order(it return an iterator), order_of_key #define ll long long #define in cin >> #define out(a) cout << a << " " #define ot cout << #define vt(T) vector<T> #define vl vector<long long> #define flp(a) for (auto &i : a) #define endl cout << "\n"; #define pb push_back #define db pop_back #define rt return #define even(a) a % 2 == 0 #define n_digit(n) (int)log10(n) + 1 #define msb(n) (int)(log2(n)) + 1 // it is 1 based #define pll pair<ll, ll> #define all(x) x.begin(), x.end() #define lt(x) x.size() #define ter(a, b, c) a ? b : c #define yn(a) a ? ot "YES" : ot "NO" #define ff first #define ss second #define str string #define tbits(x) __builtin_popcountll(x) #define LOCAL_COMPILER #ifdef LOCAL_COMPILER #define dbg(x) \ cerr << #x << " "; \ cerr << x << "\n"; #endif #ifndef LOCAL_COMPILER #define dbg(x) #endif //----------------------------------------- template <class T> void vin(T &v) { flp(v) { in i; } } template <class T> void vin(set<T> &s, ll n) { for (int i = 0; i < n; i++) { T d; in d; s.insert(d); } } template <class T> void vin(multiset<T> &s, ll n) { for (int i = 0; i < n; i++) { T d; in d; s.insert(d); } } template <class T1, class T2> void vin(map<T1, T2> &m, ll n) { for (int i = 0; i < n; i++) { T1 a; T2 b; cin >> a; cin >> b; m[a] = b; } } template <class T> void vin(map<T, ll> &m, ll n) { for (int i = 0; i < n; i++) { T a; cin >> a; m[a]++; } } template <class T> void vout(T &v) { for (int i = 0; i < lt(v); i++) { ot(v[i]); if (i != lt(v) - 1) ot(" "); } } inline ll power2(ll n) { ll answer = 0; if (n != 0) answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1; return answer; } //----------------------------------------- const ll N = 1e+9 + 7; const ll N2 = 998244353; const long double epsilon = 1e-9; //----------------------------------------- // modulo arithmetic ll expo(ll a, ll b, ll mod) { ll res = 1; while (b > 0) { if (b & 1) res = (res * a) % mod; a = (a * a) % mod; b = b >> 1; } return res; } ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); } ll mod_add(ll a, ll b, ll m) { a = a % m; b = b % m; return (((a + b) % m) + m) % m; } ll mod_mul(ll a, ll b, ll m) { a = a % m; b = b % m; return (((a * b) % m) + m) % m; } ll mod_sub(ll a, ll b, ll m) { a = a % m; b = b % m; return (((a - b) % m) + m) % m; } ll mod_div(ll a, ll b, ll m) { a = a % m; b = b % m; return (mod_mul(a, mminvprime(b, m), m) + m) % m; } // only for prime m ll ncr(ll n, ll r, ll mod = N) { ll answer = 0; if (n >= r) { ll a = 1; for (ll i = n; i >= n - r + 1; i--) a = mod_mul(a, i, mod); ll b = 1; for (ll i = 1; i <= r; i++) b = mod_mul(b, i, mod); b = mminvprime(b, mod); a = mod_mul(a, b, mod); answer = a; } return answer; } ll factorial(ll n, ll mod = N) { ll answer = 1; for (int i = 2; i <= n; i++) answer = mod_mul(answer, i, mod); return answer; } ll npr(ll n, ll r, ll mod = N) { ll answer = ncr(n, r, N) * factorial(r, N); answer %= N; return answer; } //----------------------------------------- // KMP search void computeLPSArray(string pat, ll M, ll lps[]) { ll len = 0; ll i = 1; lps[0] = 0; while (i < M) { if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } else { if (len != 0) len = lps[len - 1]; else { lps[i] = len; i++; } } } } ll KMPSearch(string pat, string txt) { ll M = pat.length(); ll N = txt.length(); ll lps[M]; ll j = 0; computeLPSArray(pat, M, lps); ll i = 0; ll res = 0; ll next_i = 0; while (i < N) { if (pat[j] == txt[i]) i++, j++; if (j == M) { j = lps[j - 1]; res++; } else if (i < N && pat[j] != txt[i]) { if (j != 0) j = lps[j - 1]; else i = i + 1; } } return res; } // O(M+N) map<ll, ll> prime_factors(ll n) { map<ll, ll> answer; ll a = n; for (ll i = 2; i * i <= a; i++) while (a % i == 0) answer[i]++, a /= i; if (a > 1) answer[a]++; return answer; } //----------------------------------------- bool cmp(ll a, ll b) { rt a > b; } bool (*function_ptr)(ll a, ll b) = cmp; // this is a function pointer //----------------------------------------- const ll n_sieve = (1e7 + 9) + 1; // O(Nlog(log(N))) vector<bool> prime_sieve(n_sieve, true); void initialise_sieve(vector<bool> &prime_sieve) { prime_sieve[0] = false; prime_sieve[1] = false; for (ll i = 2; i < lt(prime_sieve); i++) if (prime_sieve[i] == true) for (ll j = 2; j * i < lt(prime_sieve); j++) prime_sieve[j * i] = false; } //----------------------------------------- // code starts here //------------------------------------ void solve() { // always use 1LL for bit // --------------------------------------- // ll T; //->test cases // cin >> T; // while (T--) // { // endl; // // code end here-> // } ll l, r, m; cin >> l >> r >> m; if (l >= m) { ot 0; return; } r = min(m - 1, r); ll f = 1; ll p = 1; for (ll i = 1; i <= l; i++) { f = mod_mul(f, i, m); p = mod_mul(p, f, m); } f = factorial(l); ll answer = p; for (ll i = l + 1; i <= r; i++) { f = mod_mul(f, i, m); p = mod_mul(p, f, m); answer = mod_add(answer, p, m); } ot answer; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); // ------------------------------------------- // initialise_sieve(prime_sieve); //---------------------------------------- solve(); //---------------------------------------- return 0; } //-----------------------------------------