結果

問題 No.2183 LCA on Rational Tree
ユーザー ニックネームニックネーム
提出日時 2023-01-08 04:27:17
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 1,574 bytes
コンパイル時間 362 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 11,392 KB
最終ジャッジ日時 2024-12-15 06:11:25
合計ジャッジ時間 5,496 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
11,136 KB
testcase_01 AC 1,262 ms
11,136 KB
testcase_02 TLE -
testcase_03 AC 546 ms
11,392 KB
testcase_04 AC 178 ms
11,136 KB
testcase_05 AC 405 ms
11,264 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class PrimeNumbers:
    def __init__(self,nmax):
        rootnmax = isqrt(nmax)
        self.prime_judgement = [True]*(rootnmax+1)
        self.prime_judgement[0] = self.prime_judgement[1] = False
        for i in range(2,rootnmax+1):
            if self.prime_judgement[i]:
                for j in range(2,rootnmax//i+1):
                    self.prime_judgement[i*j] = False
        self.prime_list = []
        for i,flag in enumerate(self.prime_judgement):
            if flag: self.prime_list.append(i)
    def prime_factorization(self,n):
        return_list = []
        for i in self.prime_list:
            if n==1 or i*i>n: break
            if n%i==0:
                return_list.append([i,0])
                while n%i==0: return_list[-1][1] += 1; n //= i
        if n!=1: return_list.append([n,1])
        return return_list
from math import isqrt,gcd
pn = PrimeNumbers(10**9)
for _ in range(int(input())):
    pu,qu,pv,qv = map(int,input().split())
    while not qu-pu==qv-pv==1:
        if qu-pu==qv-pv:
            if pu>pv: pu,qu,pv,qv = pv,qv,pu,qu
            diff = set()
            for x,_ in pn.prime_factorization(qu-pu): diff.add(x-pu%x)
            m = min(diff)
            if pu+m>pv: break
            else: d = gcd(pu+m,qu+m); pu = (pu+m)//d; qu = (qu+m)//d
        else:
            if qu-pu<qv-pv: pu,qu,pv,qv = pv,qv,pu,qu
            diff = set()
            for x,_ in pn.prime_factorization(qu-pu): diff.add(x-pu%x)
            m = min(diff)
            d = gcd(pu+m,qu+m); pu = (pu+m)//d; qu = (qu+m)//d
    print(*max((pu,qu),(pv,qv)))
0