結果
問題 | No.177 制作進行の宮森あおいです! |
ユーザー | mkawa2 |
提出日時 | 2023-01-12 01:01:43 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 106 ms / 2,000 ms |
コード長 | 6,056 bytes |
コンパイル時間 | 543 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 78,848 KB |
最終ジャッジ日時 | 2024-12-22 18:35:51 |
合計ジャッジ時間 | 3,064 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 73 ms
68,864 KB |
testcase_01 | AC | 78 ms
68,992 KB |
testcase_02 | AC | 72 ms
68,224 KB |
testcase_03 | AC | 77 ms
68,992 KB |
testcase_04 | AC | 74 ms
69,120 KB |
testcase_05 | AC | 76 ms
69,504 KB |
testcase_06 | AC | 81 ms
71,552 KB |
testcase_07 | AC | 74 ms
69,248 KB |
testcase_08 | AC | 77 ms
69,248 KB |
testcase_09 | AC | 93 ms
74,112 KB |
testcase_10 | AC | 102 ms
78,848 KB |
testcase_11 | AC | 87 ms
74,204 KB |
testcase_12 | AC | 106 ms
78,800 KB |
testcase_13 | AC | 74 ms
68,096 KB |
testcase_14 | AC | 76 ms
68,224 KB |
testcase_15 | AC | 72 ms
68,736 KB |
ソースコード
import sys # sys.setrecursionlimit(1000005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 md = 10**9+7 # md = 998244353 from typing import NamedTuple, Optional, List, cast class MFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int class _Edge: def __init__(self, dst: int, cap: int) -> None: self.dst = dst self.cap = cap self.rev: Optional[MFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, 0) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def add_undir_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, cap) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MFGraph._Edge, e.rev) return MFGraph.Edge( re.dst, e.dst, e.cap+re.cap, re.cap ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def change_edge(self, i: int, new_cap: int, new_flow: int) -> None: assert 0 <= i < len(self._edges) assert 0 <= new_flow <= new_cap e = self._edges[i] e.cap = new_cap-new_flow assert e.rev is not None e.rev.cap = new_flow def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) current_edge = [0]*self._n level = [0]*self._n def fill(arr: List[int], value: int) -> None: for i in range(len(arr)): arr[i] = value def bfs() -> bool: fill(level, self._n) queue = [] q_front = 0 queue.append(s) level[s] = 0 while q_front < len(queue): v = queue[q_front] q_front += 1 next_level = level[v]+1 for e in self._g[v]: if e.cap == 0 or level[e.dst] <= next_level: continue level[e.dst] = next_level if e.dst == t: return True queue.append(e.dst) return False def dfs(lim: int) -> int: stack = [] edge_stack: List[MFGraph._Edge] = [] stack.append(t) while stack: v = stack[-1] if v == s: flow = min(lim, min(e.cap for e in edge_stack)) for e in edge_stack: e.cap -= flow assert e.rev is not None e.rev.cap += flow return flow next_level = level[v]-1 while current_edge[v] < len(self._g[v]): e = self._g[v][current_edge[v]] re = cast(MFGraph._Edge, e.rev) if level[e.dst] != next_level or re.cap == 0: current_edge[v] += 1 continue stack.append(e.dst) edge_stack.append(re) break else: stack.pop() if edge_stack: edge_stack.pop() level[v] = self._n return 0 flow = 0 while flow < flow_limit: if not bfs(): break fill(current_edge, 0) while flow < flow_limit: f = dfs(flow_limit-flow) flow += f if f == 0: break return flow def min_cut(self, s: int) -> List[bool]: visited = [False]*self._n stack = [s] visited[s] = True while stack: v = stack.pop() for e in self._g[v]: if e.cap > 0 and not visited[e.dst]: visited[e.dst] = True stack.append(e.dst) return visited w = II() n = II() jj = LI() m = II() cc = LI() good = [[1]*m for _ in range(n)] for y in range(m): xx = LI1() for x in xx[1:]: good[x][y] = 0 mf = MFGraph(n+m+2) s = n+m t = s+1 for x, j in enumerate(jj): mf.add_edge(s, x, j) for y, c in enumerate(cc): mf.add_edge(y+n, t, c) for x in range(n): for y in range(m): if good[x][y]: mf.add_edge(x, y+n, w) if mf.flow(s, t, w) == w: print("SHIROBAKO") else: print("BANSAKUTSUKITA")