結果

問題 No.2578 Jewelry Store
ユーザー suisensuisen
提出日時 2023-01-13 17:55:44
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,066 ms / 3,500 ms
コード長 3,360 bytes
コンパイル時間 438 ms
コンパイル使用メモリ 82,512 KB
実行使用メモリ 137,260 KB
最終ジャッジ日時 2024-09-27 00:36:47
合計ジャッジ時間 18,068 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 60 ms
67,612 KB
testcase_01 AC 58 ms
68,500 KB
testcase_02 AC 108 ms
78,968 KB
testcase_03 AC 103 ms
78,472 KB
testcase_04 AC 148 ms
78,584 KB
testcase_05 AC 92 ms
78,200 KB
testcase_06 AC 108 ms
78,792 KB
testcase_07 AC 142 ms
78,592 KB
testcase_08 AC 102 ms
79,024 KB
testcase_09 AC 142 ms
78,456 KB
testcase_10 AC 191 ms
79,160 KB
testcase_11 AC 90 ms
78,764 KB
testcase_12 AC 102 ms
78,360 KB
testcase_13 AC 106 ms
78,380 KB
testcase_14 AC 105 ms
78,836 KB
testcase_15 AC 104 ms
78,488 KB
testcase_16 AC 203 ms
78,740 KB
testcase_17 AC 144 ms
79,120 KB
testcase_18 AC 101 ms
79,172 KB
testcase_19 AC 124 ms
78,460 KB
testcase_20 AC 145 ms
78,908 KB
testcase_21 AC 150 ms
78,512 KB
testcase_22 AC 111 ms
78,484 KB
testcase_23 AC 115 ms
78,700 KB
testcase_24 AC 99 ms
78,396 KB
testcase_25 AC 110 ms
78,864 KB
testcase_26 AC 105 ms
78,540 KB
testcase_27 AC 284 ms
79,000 KB
testcase_28 AC 438 ms
79,408 KB
testcase_29 AC 438 ms
79,204 KB
testcase_30 AC 543 ms
79,912 KB
testcase_31 AC 276 ms
78,928 KB
testcase_32 AC 260 ms
115,356 KB
testcase_33 AC 294 ms
106,488 KB
testcase_34 AC 360 ms
119,148 KB
testcase_35 AC 158 ms
92,884 KB
testcase_36 AC 304 ms
122,908 KB
testcase_37 AC 198 ms
79,176 KB
testcase_38 AC 239 ms
81,080 KB
testcase_39 AC 221 ms
82,900 KB
testcase_40 AC 236 ms
80,856 KB
testcase_41 AC 219 ms
79,488 KB
testcase_42 AC 209 ms
79,508 KB
testcase_43 AC 272 ms
79,456 KB
testcase_44 AC 173 ms
78,516 KB
testcase_45 AC 237 ms
79,912 KB
testcase_46 AC 203 ms
83,032 KB
testcase_47 AC 959 ms
84,468 KB
testcase_48 AC 452 ms
137,260 KB
testcase_49 AC 2,066 ms
102,716 KB
testcase_50 AC 2,018 ms
102,480 KB
testcase_51 AC 206 ms
79,360 KB
testcase_52 AC 486 ms
79,824 KB
testcase_53 AC 119 ms
78,868 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from typing import List

from math import gcd

input = sys.stdin.readline

# https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98
class PrimeFactorize:
    @staticmethod
    def __isPrimeMR(n: int):
        d = n - 1
        d = d // (d & -d)
        L = [2]
        for a in L:
            t = d
            y = pow(a, t, n)
            if y == 1: continue
            while y != n - 1:
                y = (y * y) % n
                if y == 1 or t == n - 1: return 0
                t <<= 1
        return 1

    @staticmethod
    def __findFactorRho(n: int):
        m = 1 << n.bit_length() // 8
        for c in range(1, 99):
            f = lambda x: (x * x + c) % n
            y, r, q, g = 2, 1, 1, 1
            x = ys = y
            while g == 1:
                x = y
                for i in range(r):
                    y = f(y)
                k = 0
                while k < r and g == 1:
                    ys = y
                    for i in range(min(m, r - k)):
                        y = f(y)
                        q = q * abs(x - y) % n
                    g = gcd(q, n)
                    k += m
                r <<= 1
            if g == n:
                g = 1
                while g == 1:
                    ys = f(ys)
                    g = gcd(abs(x - ys), n)
            if g < n:
                if PrimeFactorize.__isPrimeMR(g): return g
                elif PrimeFactorize.__isPrimeMR(n // g): return n // g
                return PrimeFactorize.__findFactorRho(g)

    @staticmethod
    def primeFactor(n):
        i = 2
        ret = {}
        rhoFlg = 0
        while i*i <= n:
            k = 0
            while n % i == 0:
                n //= i
                k += 1
            if k: ret[i] = k
            i += 1 + i % 2
            if i == 101 and n >= 2 ** 20:
                while n > 1:
                    if PrimeFactorize.__isPrimeMR(n):
                        ret[n], n = 1, 1
                    else:
                        rhoFlg = 1
                        j = PrimeFactorize.__findFactorRho(n)
                        k = 0
                        while n % j == 0:
                            n //= j
                            k += 1
                        ret[j] = k

        if n > 1: ret[n] = 1
        if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
        return ret

P = 998244353

t, m = map(int, input().split())
pf = PrimeFactorize.primeFactor(m).keys()
k = len(pf)

parity = [(-1) ** bin(s).count('1') for s in range(1 << k)]

def supset_zeta_product(f: List[int]):
    block = 1
    while block < 1 << k:
        offset = 0
        while offset < 1 << k:
            for i in range(offset, offset + block):
                f[i] = f[i + block] * f[i] % P
            offset += 2 * block
        block <<= 1

def solve():
    _, x0, c, d = map(int, input().split())

    prod = [1] * (1 << k)

    wi = x0
    for ai in map(int, input().split()):
        q, r = divmod(m, ai)
        if r == 0:
            t = 0
            for j, p in enumerate(pf):
                t |= (q % p == 0) << j
            prod[t] = prod[t] * (1 + wi) % P
        wi = (c * wi + d) % P
    
    supset_zeta_product(prod)

    ans = 0
    for s in range(1 << k):
        ans += parity[s] * prod[s]
    if m == 1:
        ans -= 1

    print(ans % P)

for _ in range(t):
    solve()
0