結果
問題 | No.2578 Jewelry Store |
ユーザー | suisen |
提出日時 | 2023-01-13 17:55:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,066 ms / 3,500 ms |
コード長 | 3,360 bytes |
コンパイル時間 | 438 ms |
コンパイル使用メモリ | 82,512 KB |
実行使用メモリ | 137,260 KB |
最終ジャッジ日時 | 2024-09-27 00:36:47 |
合計ジャッジ時間 | 18,068 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 60 ms
67,612 KB |
testcase_01 | AC | 58 ms
68,500 KB |
testcase_02 | AC | 108 ms
78,968 KB |
testcase_03 | AC | 103 ms
78,472 KB |
testcase_04 | AC | 148 ms
78,584 KB |
testcase_05 | AC | 92 ms
78,200 KB |
testcase_06 | AC | 108 ms
78,792 KB |
testcase_07 | AC | 142 ms
78,592 KB |
testcase_08 | AC | 102 ms
79,024 KB |
testcase_09 | AC | 142 ms
78,456 KB |
testcase_10 | AC | 191 ms
79,160 KB |
testcase_11 | AC | 90 ms
78,764 KB |
testcase_12 | AC | 102 ms
78,360 KB |
testcase_13 | AC | 106 ms
78,380 KB |
testcase_14 | AC | 105 ms
78,836 KB |
testcase_15 | AC | 104 ms
78,488 KB |
testcase_16 | AC | 203 ms
78,740 KB |
testcase_17 | AC | 144 ms
79,120 KB |
testcase_18 | AC | 101 ms
79,172 KB |
testcase_19 | AC | 124 ms
78,460 KB |
testcase_20 | AC | 145 ms
78,908 KB |
testcase_21 | AC | 150 ms
78,512 KB |
testcase_22 | AC | 111 ms
78,484 KB |
testcase_23 | AC | 115 ms
78,700 KB |
testcase_24 | AC | 99 ms
78,396 KB |
testcase_25 | AC | 110 ms
78,864 KB |
testcase_26 | AC | 105 ms
78,540 KB |
testcase_27 | AC | 284 ms
79,000 KB |
testcase_28 | AC | 438 ms
79,408 KB |
testcase_29 | AC | 438 ms
79,204 KB |
testcase_30 | AC | 543 ms
79,912 KB |
testcase_31 | AC | 276 ms
78,928 KB |
testcase_32 | AC | 260 ms
115,356 KB |
testcase_33 | AC | 294 ms
106,488 KB |
testcase_34 | AC | 360 ms
119,148 KB |
testcase_35 | AC | 158 ms
92,884 KB |
testcase_36 | AC | 304 ms
122,908 KB |
testcase_37 | AC | 198 ms
79,176 KB |
testcase_38 | AC | 239 ms
81,080 KB |
testcase_39 | AC | 221 ms
82,900 KB |
testcase_40 | AC | 236 ms
80,856 KB |
testcase_41 | AC | 219 ms
79,488 KB |
testcase_42 | AC | 209 ms
79,508 KB |
testcase_43 | AC | 272 ms
79,456 KB |
testcase_44 | AC | 173 ms
78,516 KB |
testcase_45 | AC | 237 ms
79,912 KB |
testcase_46 | AC | 203 ms
83,032 KB |
testcase_47 | AC | 959 ms
84,468 KB |
testcase_48 | AC | 452 ms
137,260 KB |
testcase_49 | AC | 2,066 ms
102,716 KB |
testcase_50 | AC | 2,018 ms
102,480 KB |
testcase_51 | AC | 206 ms
79,360 KB |
testcase_52 | AC | 486 ms
79,824 KB |
testcase_53 | AC | 119 ms
78,868 KB |
ソースコード
import sys from typing import List from math import gcd input = sys.stdin.readline # https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 class PrimeFactorize: @staticmethod def __isPrimeMR(n: int): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 @staticmethod def __findFactorRho(n: int): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 x = ys = y while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if PrimeFactorize.__isPrimeMR(g): return g elif PrimeFactorize.__isPrimeMR(n // g): return n // g return PrimeFactorize.__findFactorRho(g) @staticmethod def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if PrimeFactorize.__isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = PrimeFactorize.__findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret P = 998244353 t, m = map(int, input().split()) pf = PrimeFactorize.primeFactor(m).keys() k = len(pf) parity = [(-1) ** bin(s).count('1') for s in range(1 << k)] def supset_zeta_product(f: List[int]): block = 1 while block < 1 << k: offset = 0 while offset < 1 << k: for i in range(offset, offset + block): f[i] = f[i + block] * f[i] % P offset += 2 * block block <<= 1 def solve(): _, x0, c, d = map(int, input().split()) prod = [1] * (1 << k) wi = x0 for ai in map(int, input().split()): q, r = divmod(m, ai) if r == 0: t = 0 for j, p in enumerate(pf): t |= (q % p == 0) << j prod[t] = prod[t] * (1 + wi) % P wi = (c * wi + d) % P supset_zeta_product(prod) ans = 0 for s in range(1 << k): ans += parity[s] * prod[s] if m == 1: ans -= 1 print(ans % P) for _ in range(t): solve()