結果
問題 | No.2192 平方数の下14桁 |
ユーザー | suisen |
提出日時 | 2023-01-13 23:19:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 20,541 bytes |
コンパイル時間 | 2,790 ms |
コンパイル使用メモリ | 234,128 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-07 00:09:10 |
合計ジャッジ時間 | 4,013 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 3 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 3 ms
5,376 KB |
testcase_20 | AC | 3 ms
5,376 KB |
testcase_21 | AC | 3 ms
5,376 KB |
testcase_22 | AC | 3 ms
5,376 KB |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | AC | 3 ms
5,376 KB |
testcase_25 | AC | 3 ms
5,376 KB |
testcase_26 | AC | 3 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 3 ms
5,376 KB |
testcase_30 | AC | 3 ms
5,376 KB |
testcase_31 | AC | 3 ms
5,376 KB |
testcase_32 | AC | 3 ms
5,376 KB |
testcase_33 | AC | 3 ms
5,376 KB |
testcase_34 | AC | 3 ms
5,376 KB |
testcase_35 | AC | 3 ms
5,376 KB |
testcase_36 | AC | 3 ms
5,376 KB |
testcase_37 | AC | 3 ms
5,376 KB |
testcase_38 | AC | 3 ms
5,376 KB |
testcase_39 | AC | 3 ms
5,376 KB |
testcase_40 | AC | 3 ms
5,376 KB |
testcase_41 | AC | 3 ms
5,376 KB |
testcase_42 | AC | 3 ms
5,376 KB |
testcase_43 | AC | 3 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #include <cmath> #include <iostream> #include <random> #include <numeric> #include <utility> #include <cassert> #include <cstdint> #include <iterator> #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; } // namespace suisen namespace suisen::miller_rabin { namespace internal { constexpr uint32_t THRESHOLD_1 = 341531U; constexpr uint64_t BASE_1[] { 9345883071009581737ULL }; constexpr uint32_t THRESHOLD_2 = 1050535501U; constexpr uint64_t BASE_2[] { 336781006125ULL, 9639812373923155ULL }; constexpr uint64_t THRESHOLD_3 = 350269456337ULL; constexpr uint64_t BASE_3[] { 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL }; constexpr uint64_t THRESHOLD_4 = 55245642489451ULL; constexpr uint64_t BASE_4[] { 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL }; constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL; constexpr uint64_t BASE_5[] { 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL }; constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL; constexpr uint64_t BASE_6[] { 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL }; constexpr uint32_t BASE_7[] { 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U }; template <auto BASE, std::size_t SIZE, typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> constexpr bool miller_rabin(T _n) { using U = std::make_unsigned_t<T>; using M = safely_multipliable_t<U>; U n = _n, d = (n - 1) >> __builtin_ctzll(n - 1); if (n == 2 or n == 3 or n == 5 or n == 7) return true; if (n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false; for (std::size_t i = 0; i < SIZE; ++i) { M y = 1, p = BASE[i] % n; if (p == 0) continue; for (U d2 = d; d2; d2 >>= 1) { if (d2 & 1) y = y * p % n; p = p * p % n; } if (y == 1) continue; for (U t = d; y != n - 1; t <<= 1) { y = y * y % n; if (y == 1 or t == n - 1) return false; } } return true; } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> constexpr bool is_prime(T n) { if (n <= 1) return false; using U = std::make_unsigned_t<T>; U n2 = n; using namespace internal; if (n2 < THRESHOLD_1) { return miller_rabin<BASE_1, 1>(n2); } else if (n2 < THRESHOLD_2) { return miller_rabin<BASE_2, 2>(n2); } else if (n2 < THRESHOLD_3) { return miller_rabin<BASE_3, 3>(n2); } else if (n2 < THRESHOLD_4) { return miller_rabin<BASE_4, 4>(n2); } else if (n2 < THRESHOLD_5) { return miller_rabin<BASE_5, 5>(n2); } else if (n2 < THRESHOLD_6) { return miller_rabin<BASE_6, 6>(n2); } else { return miller_rabin<BASE_7, 7>(n2); } } } // namespace suisen::miller_rabin #include <vector> namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template <unsigned int N> class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector<int> prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector<int> res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template <unsigned int N> std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz]; template <unsigned int N> class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector<std::pair<int, int>> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector<std::pair<int, int>> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector<int> divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector<int> divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template <unsigned int N> unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K]; } // namespace suisen namespace suisen::fast_factorize { namespace internal { template <typename T> constexpr int floor_log2(T n) { int i = 0; while (n) n >>= 1, ++i; return i - 1; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> T pollard_rho(T n) { using M = safely_multipliable_t<T>; const T m = T(1) << (floor_log2(n) / 5); static std::mt19937_64 rng{std::random_device{}()}; std::uniform_int_distribution<T> dist(0, n - 1); while (true) { T c = dist(rng); auto f = [&](T x) -> T { return (M(x) * x + c) % n; }; T x, y = 2, ys, q = 1, g = 1; for (T r = 1; g == 1; r <<= 1) { x = y; for (T i = 0; i < r; ++i) y = f(y); for (T k = 0; k < r and g == 1; k += m) { ys = y; for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n; g = std::gcd(q, n); } } if (g == n) { g = 1; while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n); } if (g < n) { if (miller_rabin::is_prime(g)) return g; if (T d = n / g; miller_rabin::is_prime(d)) return d; return pollard_rho(g); } } } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<std::pair<T, int>> factorize(T n) { static constexpr int threshold = 1000000; static Sieve<threshold> sieve; std::vector<std::pair<T, int>> res; if (n <= threshold) { for (auto [p, q] : sieve.factorize(n)) res.emplace_back(p, q); return res; } if ((n & 1) == 0) { int q = 0; do ++q, n >>= 1; while ((n & 1) == 0); res.emplace_back(2, q); } for (T p = 3; p * p <= n; p += 2) { if (p >= 101 and n >= 1 << 20) { while (n > 1) { if (miller_rabin::is_prime(n)) { res.emplace_back(std::exchange(n, 1), 1); } else { p = internal::pollard_rho(n); int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } break; } if (n % p == 0) { int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } if (n > 1) res.emplace_back(n, 1); return res; } } // namespace suisen::fast_factorize constexpr std::pair<__int128_t, __int128_t> inv_gcd(__int128_t a, __int128_t b) { a %= b; if (a < 0) a += b; if (a == 0) return {b, 0}; __int128_t s = b, t = a; __int128_t m0 = 0, m1 = 1; while (t) { __int128_t u = s / t; s -= t * u; m0 -= m1 * u; std::swap(s, t); std::swap(m0, m1); } if (m0 < 0) m0 += b / s; return {s, m0}; } __int128_t modpow(__int128_t a, __int128_t b, __int128_t m) { a %= m; __int128_t res = 1, pow_a = a; for (; b; b >>= 1) { if (b & 1) res = res * pow_a % m; pow_a = pow_a * pow_a % m; } return res; } std::optional<__int128_t> mod_sqrt(__int128_t a, const __int128_t p) { a %= p; if (a < 0) a += p; if (a == 0) return std::make_optional(0); if (p == 2) return std::make_optional(a); if (modpow(a, (p - 1) / 2, p) != 1) { return std::nullopt; } __int128_t b = 1; while (modpow(b, (p - 1) / 2, p) == 1) { ++b; } int tlz = __builtin_ctz(p - 1); __int128_t q = (p - 1) >> tlz; __int128_t x = modpow(a, (q + 1) / 2, p); b = modpow(b, q, p); for (int shift = 2;; ++shift) { __int128_t x2 = x * x % p; if (x2 == a) { return std::make_optional(x2); } __int128_t e = inv_gcd(a, p).second * x2 % p; if (modpow(e, 1 << (tlz - shift), p) != 1) { x = x * b % p; } b = b * b % p; } } int main() { long long m_, n_; std::cin >> m_ >> n_; __int128_t p, q; for (auto e : suisen::fast_factorize::factorize(m_)) { std::tie(p, q) = e; auto ox = mod_sqrt(n_, p); auto dfs = [&](auto dfs, int i, __int128_t x0, __int128_t pq) -> bool { if (i == q) return true; __int128_t f_x0 = (x0 * x0 - n_) / pq % p; __int128_t df_x0 = 2 * x0 % p; if (f_x0 < 0) f_x0 += p; if (df_x0 != 0) { __int128_t y0 = (-f_x0 * inv_gcd(df_x0, p).second) % p; if (y0 < 0) y0 += p; return dfs(dfs, i + 1, x0 + pq * y0, pq * p); } else if (f_x0 != 0) { return false; } else { for (__int128_t y0 = 0; y0 < p; ++y0) { if (dfs(dfs, i + 1, x0 + pq * y0, pq * p)) { return true; } } return false; } }; if (not (ox and (dfs(dfs, 1, *ox, p) or dfs(dfs, 1, (p - *ox) % p, p)))) { std::cout << "NO" << std::endl; return 0; } } std::cout << "YES" << std::endl; }