結果
| 問題 |
No.399 動的な領主
|
| コンテスト | |
| ユーザー |
terasa
|
| 提出日時 | 2023-01-14 11:11:34 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,028 ms / 2,000 ms |
| コード長 | 5,677 bytes |
| コンパイル時間 | 198 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 101,680 KB |
| 最終ジャッジ日時 | 2024-12-25 17:09:10 |
| 合計ジャッジ時間 | 12,672 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 19 |
ソースコード
from typing import List, Tuple, Callable, TypeVar
import sys
input = sys.stdin.readline
T = TypeVar('T')
class DualSegTree:
# reference: https://hackmd.io/@tatyam-prime/DualSegmentTree
def __init__(self, N: int, f: Callable[[T, T], T], e: T):
"""双対セグメント木
Args:
N (int): 配列の長さ
f (Callable[[T, T], T]): 作用させる関数
e (T): 単位元
Note:
値に作用を適応させる操作(遅延セグメント木のmappingに相当)と、
作用を合成する操作(遅延セグメント木のcompositionに相当)が、
同一の操作として記述できることが必要
例) 区間加算・区間代入・区間chmin等
"""
self.N = N
self.f = f
self.e = e
self.K = (self.N - 1).bit_length()
self.size = 1 << self.K
self.lazy = [e] * (self.size << 1)
def build(self, A: List[T]) -> None:
for i in range(self.N):
self.lazy[self.size + i] = A[i]
def _propagate_at(self, i: int) -> None:
if self.lazy[i] == self.e:
return
self.lazy[i << 1] = self.f(self.lazy[i << 1], self.lazy[i])
self.lazy[i << 1 | 1] = self.f(self.lazy[i << 1 | 1], self.lazy[i])
self.lazy[i] = self.e
def _propagate_above(self, i: int) -> None:
H = i.bit_length() - 1
for h in range(H, 0, -1):
self._propagate_at(i >> h)
def get(self, i: int) -> T:
i += self.size
self._propagate_above(i)
return self.lazy[i]
def set(self, i: int, a: T) -> None:
i += self.size
self._propagate_above(i)
self.lazy[i] = a
def query(self, l: int, r: int, a: T) -> None:
assert 0 <= l and l <= r and r <= self.N
l += self.size
r += self.size
self._propagate_above(l // (l & -l))
self._propagate_above(r // (r & -r) - 1)
while l < r:
if l & 1:
self.lazy[l] = self.f(self.lazy[l], a)
l += 1
if r & 1:
r -= 1
self.lazy[r] = self.f(self.lazy[r], a)
l >>= 1
r >>= 1
class HLD:
# reference: https://codeforces.com/blog/entry/53170
def __init__(self, N, E, root: int = 0):
self.N = N
self.E = E
self.root = root
self.D = [0] * self.N
self.par = [-1] * self.N
self.sz = [0] * self.N
self.top = [0] * self.N
self.ord = [None] * self.N
self._dfs_sz()
self._dfs_hld()
def path_query_range(self, u: int, v: int, is_edge_query: bool = False) -> List[Tuple[int, int]]:
"""return list of [l, r) ranges that cover u-v path"""
ret = []
while True:
if self.ord[u] > self.ord[v]:
u, v = v, u
if self.top[u] == self.top[v]:
ret.append((self.ord[u] + is_edge_query, self.ord[v] + 1))
return ret
ret.append((self.ord[self.top[v]], self.ord[v] + 1))
v = self.par[self.top[v]]
def subtree_query_range(self, v: int) -> Tuple[int, int]:
"""return [l, r) range that cover vertices of subtree v"""
return (self.ord[v], self.ord[v] + self.sz[v])
def lca(self, u, v):
while True:
if self.ord[u] > self.ord[v]:
u, v = v, u
if self.top[u] == self.top[v]:
return u
v = self.par[self.top[v]]
def _dfs_sz(self):
stack = [(self.root, -1)]
while stack:
v, p = stack.pop()
if v < 0:
v = ~v
self.sz[v] = 1
for i, dst in enumerate(self.E[v]):
if dst == p:
continue
self.sz[v] += self.sz[dst]
# v -> E[v][0] will be heavy path
if self.sz[E[v][0]] < self.sz[dst]:
self.E[v][0], self.E[v][i] = self.E[v][i], self.E[v][0]
else:
if ~p:
self.D[v] = self.D[p] + 1
self.par[v] = p
# avoid first element of E[v] is parent of vertex v if v has some children
if len(self.E[v]) >= 2 and self.E[v][0] == p:
self.E[v][0], self.E[v][1] = self.E[v][1], self.E[v][0]
stack.append((~v, p))
for dst in self.E[v]:
if dst == p:
continue
stack.append((dst, v))
def _dfs_hld(self):
stack = [(self.root, -1)]
cnt = 0
while stack:
v, p = stack.pop()
self.ord[v] = cnt
cnt += 1
heavy_path_idx = len(self.E[v]) - 1
for i, dst in enumerate(self.E[v][::-1]):
if dst == p:
continue
# top[dst] is top[v] if v -> dst is heavy path otherwise dst itself
self.top[dst] = self.top[v] if i == heavy_path_idx else dst
stack.append((dst, v))
N = int(input())
E = [[] for _ in range(N)]
for _ in range(N - 1):
u, v = map(int, input().split())
u -= 1
v -= 1
E[u].append(v)
E[v].append(u)
solver = HLD(N, E)
dst = DualSegTree(N, lambda a, b: a + b, 0)
Q = int(input())
for _ in range(Q):
a, b = map(int, input().split())
a -= 1
b -= 1
for l, r in solver.path_query_range(a, b):
dst.query(l, r, 1)
ans = 0
for i in range(N):
cnt = dst.get(i)
ans += (1 + cnt) * cnt // 2
print(ans)
terasa