結果

問題 No.529 帰省ラッシュ
ユーザー terasaterasa
提出日時 2023-01-14 12:47:28
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,133 ms / 4,500 ms
コード長 11,186 bytes
コンパイル時間 529 ms
コンパイル使用メモリ 82,200 KB
実行使用メモリ 201,664 KB
最終ジャッジ日時 2024-06-07 14:40:24
合計ジャッジ時間 22,887 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 69 ms
71,160 KB
testcase_01 AC 68 ms
70,460 KB
testcase_02 AC 69 ms
70,892 KB
testcase_03 AC 69 ms
71,804 KB
testcase_04 AC 226 ms
82,268 KB
testcase_05 AC 228 ms
82,084 KB
testcase_06 AC 242 ms
82,520 KB
testcase_07 AC 238 ms
82,680 KB
testcase_08 AC 1,732 ms
187,612 KB
testcase_09 AC 1,588 ms
179,488 KB
testcase_10 AC 1,714 ms
181,968 KB
testcase_11 AC 1,784 ms
184,224 KB
testcase_12 AC 1,332 ms
156,876 KB
testcase_13 AC 1,067 ms
201,664 KB
testcase_14 AC 1,189 ms
192,488 KB
testcase_15 AC 2,133 ms
190,368 KB
testcase_16 AC 2,119 ms
190,808 KB
testcase_17 AC 1,792 ms
200,764 KB
testcase_18 AC 1,666 ms
199,660 KB
testcase_19 AC 1,654 ms
197,276 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from typing import List, Tuple, Callable, TypeVar, Optional
import sys
import itertools
import heapq
import bisect
import math
from collections import deque, defaultdict
from functools import lru_cache, cmp_to_key

input = sys.stdin.readline

if __file__ != 'prog.py':
    sys.setrecursionlimit(10 ** 6)


def readints(): return map(int, input().split())
def readlist(): return list(readints())
def readstr(): return input()[:-1]
def readlist1(): return list(map(lambda x: int(x) - 1, input().split()))


class SegTree:
    def __init__(self, N, func, e):
        self.N = N
        self.func = func
        self.X = [e] * (N << 1)
        self.e = e

    def build(self, seq):
        for i in range(self.N):
            self.X[self.N + i] = seq[i]
        for i in range(self.N)[::-1]:
            self.X[i] = self.func(self.X[i << 1], self.X[i << 1 | 1])

    def get(self, i):
        i += self.N
        return self.X[i]

    def add(self, i, x):
        i += self.N
        self.X[i] += x
        while i > 1:
            i >>= 1
            self.X[i] = self.func(self.X[i << 1], self.X[i << 1 | 1])

    def update(self, i, x):
        i += self.N
        self.X[i] = x
        while i > 1:
            i >>= 1
            self.X[i] = self.func(self.X[i << 1], self.X[i << 1 | 1])

    def query(self, l, r):
        l += self.N
        r += self.N
        vl = self.e
        vr = self.e
        while l < r:
            if l & 1:
                vl = self.func(vl, self.X[l])
                l += 1
            if r & 1:
                r -= 1
                vr = self.func(self.X[r], vr)
            l >>= 1
            r >>= 1
        return self.func(vl, vr)


class DFSTree:
    # cf: https://codeforces.com/blog/entry/68138
    def __init__(self, N: int):
        self.N = N
        self.edges = []

        self.E = [[] for _ in range(self.N)]
        # span-edge and back-edge (directed)
        self.span_edge = [[] for _ in range(self.N)]
        self.back_edge = [[] for _ in range(self.N)]

        self.ord = [-1] * self.N
        self.low = [-1] * self.N
        self.par = [None] * self.N

        self.is_art = [False] * self.N
        self.is_bridge = []

        self.built = False

    def add_edge(self, u: int, v: int) -> None:
        """add edge"""
        eid = len(self.edges)
        self.edges.append((u, v))
        self.E[u].append((v, eid))
        self.E[v].append((u, eid))
        self.is_bridge.append(False)

    def build(self) -> None:
        """build dfs tree"""
        cnt = 0
        self.tecc_id = [-1] * self.N
        self.tvcc_id = [-1] * len(self.edges)
        self.bcc_num = 0
        for i in range(self.N):
            if ~self.ord[i]:
                continue
            stack = [(i, -1, -1)]
            estack = []
            while stack:
                v, p, p_eid = stack.pop()
                if v < 0:
                    v = ~v
                    for d, i in self.span_edge[v]:
                        if d == p:
                            continue
                        self.low[v] = min(self.low[v], self.low[d])
                    if ~p and self.ord[p] <= self.low[v]:
                        while True:
                            eid = estack.pop()
                            self.tvcc_id[eid] = self.bcc_num
                            if eid == p_eid:
                                break
                        self.bcc_num += 1
                else:
                    if ~self.ord[v]:
                        continue
                    self.ord[v] = cnt
                    self.low[v] = cnt
                    cnt += 1
                    # p -> v is span-edge.
                    if ~p:
                        self.par[v] = (p, p_eid)
                        self.span_edge[p].append((v, p_eid))
                        estack.append(p_eid)
                    stack.append((~v, p, p_eid))

                    for d, eid in self.E[v][::-1]:
                        if eid == p_eid:
                            continue
                        if ~self.ord[d]:
                            # v -> d is back-edge since d is already visited.
                            self.back_edge[v].append((d, eid))
                            self.low[v] = min(self.low[v], self.ord[d])
                            estack.append(eid)
                            continue
                        stack.append((d, v, eid))

        self._search_bridge()
        self._search_articulation_points()
        self.built = True

    def bridges(self) -> List[Tuple[int, int]]:
        """return list of edges that are bridges"""
        assert self.built
        return [e for i, e in enumerate(self.edges) if self.is_bridge[i]]

    def articulation_points(self) -> List[int]:
        """return list of vertices that are articulation points"""
        assert self.built
        return [i for i in range(self.N) if self.is_art[i]]

    def two_edge_connected_components(self) -> List[List[int]]:
        assert self.built
        cnt = 0
        for i in range(self.N):
            if ~self.tecc_id[i]:
                continue
            stack = [i]
            while stack:
                v = stack.pop()
                if ~self.tecc_id[v]:
                    continue
                self.tecc_id[v] = cnt
                for d, eid in self.E[v]:
                    if ~self.tecc_id[d] or self.is_bridge[eid]:
                        continue
                    stack.append(d)
            cnt += 1
        ret = [[] for _ in range(cnt)]
        for i, tid in enumerate(self.tecc_id):
            assert ~tid
            ret[tid].append(i)
        return ret

    def biconnected_components(self) -> List[List[int]]:
        assert self.built
        ret = [set() for _ in range(self.bcc_num)]
        for eid, tid in enumerate(self.tvcc_id):
            assert ~tid
            u, v = self.edges[eid]
            ret[tid].add(u)
            ret[tid].add(v)
        ret = [list(s) for s in ret]
        for i in range(self.N):
            if not self.E[i]:
                ret.append([i])
        return ret

    def _search_bridge(self) -> None:
        for u in range(self.N):
            for v, i in self.span_edge[u]:
                # (u, v) is bridge if vertex u has child v
                # that does not have lowlink to pass over its parent
                self.is_bridge[i] = self.ord[u] < self.low[v]

    def _search_articulation_points(self) -> None:
        for u in range(self.N):
            if self.par[u] is None:
                self.is_art[u] = len(self.span_edge[u]) >= 2
            else:
                for v, _ in self.span_edge[u]:
                    if self.ord[u] <= self.low[v]:
                        self.is_art[u] = True
                        break


class HLD:
    # reference: https://codeforces.com/blog/entry/53170
    def __init__(self, N, E, root: int = 0):
        self.N = N
        self.E = E
        self.root = root

        self.D = [0] * self.N
        self.par = [-1] * self.N
        self.sz = [0] * self.N
        self.top = [0] * self.N

        self.ord = [None] * self.N

        self._dfs_sz()
        self._dfs_hld()

    def path_query_range(self, u: int, v: int, is_edge_query: bool = False) -> List[Tuple[int, int]]:
        """return list of [l, r) ranges that cover u-v path"""
        ret = []
        while True:
            if self.ord[u] > self.ord[v]:
                u, v = v, u
            if self.top[u] == self.top[v]:
                ret.append((self.ord[u] + is_edge_query, self.ord[v] + 1))
                return ret
            ret.append((self.ord[self.top[v]], self.ord[v] + 1))
            v = self.par[self.top[v]]

    def subtree_query_range(self, v: int, is_edge_query: bool = False) -> Tuple[int, int]:
        """return [l, r) range that cover vertices of subtree v"""
        return (self.ord[v] + is_edge_query, self.ord[v] + self.sz[v])

    def get_index(self, v: int) -> int:
        return self.ord[v]

    def lca(self, u, v):
        while True:
            if self.ord[u] > self.ord[v]:
                u, v = v, u
            if self.top[u] == self.top[v]:
                return u
            v = self.par[self.top[v]]

    def _dfs_sz(self):
        stack = [(self.root, -1)]
        while stack:
            v, p = stack.pop()
            if v < 0:
                v = ~v
                self.sz[v] = 1
                for i, dst in enumerate(self.E[v]):
                    if dst == p:
                        continue
                    self.sz[v] += self.sz[dst]
                    # v -> E[v][0] will be heavy path
                    if self.sz[self.E[v][0]] < self.sz[dst]:
                        self.E[v][0], self.E[v][i] = self.E[v][i], self.E[v][0]
            else:
                if ~p:
                    self.D[v] = self.D[p] + 1
                    self.par[v] = p
                # avoid first element of E[v] is parent of vertex v if v has some children
                if len(self.E[v]) >= 2 and self.E[v][0] == p:
                    self.E[v][0], self.E[v][1] = self.E[v][1], self.E[v][0]
                stack.append((~v, p))
                for dst in self.E[v]:
                    if dst == p:
                        continue
                    stack.append((dst, v))

    def _dfs_hld(self):
        stack = [(self.root, -1)]
        cnt = 0
        while stack:
            v, p = stack.pop()
            self.ord[v] = cnt
            cnt += 1
            heavy_path_idx = len(self.E[v]) - 1
            for i, dst in enumerate(self.E[v][::-1]):
                if dst == p:
                    continue
                # top[dst] is top[v] if v -> dst is heavy path otherwise dst itself
                self.top[dst] = self.top[v] if i == heavy_path_idx else dst
                stack.append((dst, v))


N, M, Q = readints()
dfs_tree = DFSTree(N)
E = [[] for _ in range(N)]
for _ in range(M):
    a, b = readints()
    a -= 1
    b -= 1
    E[a].append(b)
    E[b].append(a)
    dfs_tree.add_edge(a, b)
dfs_tree.build()
T = dfs_tree.two_edge_connected_components()
NE = [[] for _ in range(len(T))]
for u in range(N):
    for v in E[u]:
        s, t = dfs_tree.tecc_id[u], dfs_tree.tecc_id[v]
        if s == t:
            continue
        NE[s].append(t)
        NE[t].append(s)
NE = [list(set(ne)) for ne in NE]

solver = HLD(len(T), NE)
st = SegTree(len(T), max, (0, -1))
st.build([(0, i) for i in range(len(T))])
H = [[] for _ in range(len(T))]
for _ in range(Q):
    t, *q = readints()
    if t == 1:
        u, w = q
        u -= 1
        idx = solver.get_index(dfs_tree.tecc_id[u])
        heapq.heappush(H[idx], -w)
        v = -H[idx][0]
        st.update(idx, (v, idx))
    else:
        u, v = q
        u -= 1
        v -= 1
        s, t = dfs_tree.tecc_id[u], dfs_tree.tecc_id[v]
        e = (0, len(T))
        ma = e
        for l, r in solver.path_query_range(s, t):
            v = st.query(l, r)
            ma = max(ma, v)
        if ma == e:
            print(-1)
            continue
        max_value, idx = ma
        heapq.heappop(H[idx])
        nxt = -H[idx][0] if H[idx] else 0
        st.update(idx, (nxt, idx))
        print(max_value)
0