結果
問題 | No.235 めぐるはめぐる (5) |
ユーザー | terasa |
提出日時 | 2023-01-14 16:05:56 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 6,461 ms / 10,000 ms |
コード長 | 8,717 bytes |
コンパイル時間 | 449 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 159,664 KB |
最終ジャッジ日時 | 2024-12-26 01:02:03 |
合計ジャッジ時間 | 25,839 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6,461 ms
155,816 KB |
testcase_01 | AC | 3,708 ms
159,664 KB |
testcase_02 | AC | 5,516 ms
156,592 KB |
ソースコード
from typing import List, Tuple, Callable, TypeVar, Optional import sys import itertools import heapq import bisect import math from collections import deque, defaultdict from functools import lru_cache, cmp_to_key input = sys.stdin.readline if __file__ != 'prog.py': sys.setrecursionlimit(10 ** 6) def readints(): return map(int, input().split()) def readlist(): return list(readints()) def readstr(): return input()[:-1] def readlist1(): return list(map(lambda x: int(x) - 1, input().split())) S = TypeVar('S') F = TypeVar('F') class LazySegTree: # reference: https://github.com/shakayami/ACL-for-python # reference: https://maspypy.com/segment-tree-%E3%81%AE%E3%81%8A%E5%8B%89%E5%BC%B72 # reference: https://betrue12.hateblo.jp/entry/2020/09/22/194541 def __init__(self, N: int, op: Callable[[S, S], S], e: S, mapping: Callable[[F, S], S], composition: Callable[[F, F], F], id_: F): """ 遅延セグメント木 Args: N (int): 配列の長さ op (Callable[[S, S], S]): 区間取得に用いる演算 e (S): 全てのaに対して op(a, e) = a が成り立つ単位元 mapping (Callable[[F, S], S]): dataに作用させる関数 composition (Callable[[F, F], F]): lazyに作用させる関数 f(g(x)) id_ (F): 全てのaに対して mapping(id_, a) = a が成り立つ恒等写像 Note: 任意の x, y ∈ S, f, g ∈ F に対して、 - f(op(x, y)) = op(f(x), f(y)) - f(g(x)) = (g ∘ f)(x) であることが必要 例) RMQ and RAQ - min(x, y) + a = min(x + a, y + a) - ((x + b) + a) = x + (a + b) """ self.N = N self.op = op self.e = e self.mapping = mapping self.composition = composition self.id = id_ self.K = (self.N - 1).bit_length() self.size = 1 << (self.K) self.data = [e] * (self.size << 1) self.lazy = [id_] * (self.size) def build(self, A: List[S]) -> None: for i in range(self.N): self.data[self.size + i] = A[i] for i in range(self.size - 1, 0, -1): self.data[i] = self.op(self.data[i << 1], self.data[i << 1 | 1]) def _eval_at(self, i: int, f: F) -> None: self.data[i] = self.mapping(f, self.data[i]) if i < self.size: self.lazy[i] = self.composition(f, self.lazy[i]) def _propagate_at(self, i: int) -> None: self._eval_at(i << 1, self.lazy[i]) self._eval_at(i << 1 | 1, self.lazy[i]) self.lazy[i] = self.id def _propagate_above(self, i: int) -> None: H = i.bit_length() - 1 for h in range(H, 0, -1): self._propagate_at(i >> h) def _recalc_at(self, i: int) -> None: self.data[i] = self.op(self.data[i << 1], self.data[i << 1 | 1]) def _recalc_above(self, i: int) -> None: while i > 1: i >>= 1 self._recalc_at(i) def set(self, i: int, x: S) -> None: i += self.size self._propagate_above(i) self.data[i] = x self._recalc_above(i) def get(self, i) -> S: i += self.size self._propagate_above(i) return self.data[i] def prod(self, l: int, r: int) -> S: assert 0 <= l and l <= r and r <= self.N if l == r: return self.e l += self.size r += self.size self._propagate_above(l // (l & -l)) self._propagate_above(r // (r & -r) - 1) vl = self.e vr = self.e while l < r: if l & 1: vl = self.op(vl, self.data[l]) l += 1 if r & 1: r -= 1 vr = self.op(self.data[r], vr) l >>= 1 r >>= 1 return self.op(vl, vr) def all_prod(self) -> S: return self.data[1] def apply(self, l: int, r: int, f: F) -> None: assert 0 <= l and l <= r and r <= self.N if l == r: return l += self.size r += self.size l0 = l // (l & -l) r0 = r // (r & -r) - 1 self._propagate_above(l0) self._propagate_above(r0) while l < r: if l & 1: self._eval_at(l, f) l += 1 if r & 1: r -= 1 self._eval_at(r, f) l >>= 1 r >>= 1 self._recalc_above(l0) self._recalc_above(r0) class HLD: # reference: https://codeforces.com/blog/entry/53170 def __init__(self, N, E, root: int = 0): self.N = N self.E = E self.root = root self.D = [0] * self.N self.par = [-1] * self.N self.sz = [0] * self.N self.top = [0] * self.N self.ord = [None] * self.N self._dfs_sz() self._dfs_hld() def path_query_range(self, u: int, v: int, is_edge_query: bool = False) -> List[Tuple[int, int]]: """return list of [l, r) ranges that cover u-v path""" ret = [] while True: if self.ord[u] > self.ord[v]: u, v = v, u if self.top[u] == self.top[v]: ret.append((self.ord[u] + is_edge_query, self.ord[v] + 1)) return ret ret.append((self.ord[self.top[v]], self.ord[v] + 1)) v = self.par[self.top[v]] def subtree_query_range(self, v: int, is_edge_query: bool = False) -> Tuple[int, int]: """return [l, r) range that cover vertices of subtree v""" return (self.ord[v] + is_edge_query, self.ord[v] + self.sz[v]) def get_index(self, v: int) -> int: return self.ord[v] def lca(self, u, v): while True: if self.ord[u] > self.ord[v]: u, v = v, u if self.top[u] == self.top[v]: return u v = self.par[self.top[v]] def _dfs_sz(self): stack = [(self.root, -1)] while stack: v, p = stack.pop() if v < 0: v = ~v self.sz[v] = 1 for i, dst in enumerate(self.E[v]): if dst == p: continue self.sz[v] += self.sz[dst] # v -> E[v][0] will be heavy path if self.sz[self.E[v][0]] < self.sz[dst]: self.E[v][0], self.E[v][i] = self.E[v][i], self.E[v][0] else: if ~p: self.D[v] = self.D[p] + 1 self.par[v] = p # avoid first element of E[v] is parent of vertex v if v has some children if len(self.E[v]) >= 2 and self.E[v][0] == p: self.E[v][0], self.E[v][1] = self.E[v][1], self.E[v][0] stack.append((~v, p)) for dst in self.E[v]: if dst == p: continue stack.append((dst, v)) def _dfs_hld(self): stack = [(self.root, -1)] cnt = 0 while stack: v, p = stack.pop() self.ord[v] = cnt cnt += 1 heavy_path_idx = len(self.E[v]) - 1 for i, dst in enumerate(self.E[v][::-1]): if dst == p: continue # top[dst] is top[v] if v -> dst is heavy path otherwise dst itself self.top[dst] = self.top[v] if i == heavy_path_idx else dst stack.append((dst, v)) def op(a, b): a0, a1 = a >> 32, a & msk b0, b1 = b >> 32, b & msk x, y = (a0 + b0) % mod, (a1 + b1) % mod return x << 32 | y def mapping(f, x): x0, x1 = x >> 32, x & msk x, y = (x0 + f * x1) % mod, x1 return x << 32 | y def composition(f, g): return (f + g) % mod N = int(input()) A = readlist() C = readlist() E = [[] for _ in range(N)] for _ in range(N - 1): a, b = readints() a -= 1 b -= 1 E[a].append(b) E[b].append(a) mod = 10 ** 9 + 7 msk = (1 << 32) - 1 solver = HLD(N, E) lst = LazySegTree(N, op, 0, mapping, composition, 0) B = [None] * N for i in range(N): B[solver.get_index(i)] = A[i] << 32 | C[i] lst.build(B) Q = int(input()) for _ in range(Q): t, *q = readints() if t == 0: x, y, z = q x -= 1 y -= 1 for l, r in solver.path_query_range(x, y): lst.apply(l, r, z) else: x, y = q x -= 1 y -= 1 ans = 0 for l, r in solver.path_query_range(x, y): ans += lst.prod(l, r) >> 32 ans %= mod print(ans)