結果
| 問題 |
No.137 貯金箱の焦り
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-01-24 16:12:00 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 16,523 bytes |
| コンパイル時間 | 4,517 ms |
| コンパイル使用メモリ | 244,596 KB |
| 実行使用メモリ | 50,308 KB |
| 最終ジャッジ日時 | 2024-06-26 04:15:46 |
| 合計ジャッジ時間 | 11,689 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 9 TLE * 1 -- * 13 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
using mint = static_modint<1234567891>;
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif
//【畳込み(法が任意)】O((n + m) log (n + m))
/*
* a と b の mod を法とした畳込みを返す.
*/
vm convolution_arbitrary_mod(const vm& a, const vm& b) {
int n = sz(a), m = sz(b);
int mod = mint::mod();
vl a0(n), a1(n), b0(m), b1(m); const int pow2 = 1 << 15;
rep(i, n) {
int ai = a[i].val();
a0[i] = ai % pow2;
a1[i] = ai / pow2;
}
rep(i, m) {
int bi = b[i].val();
b0[i] = bi % pow2;
b1[i] = bi / pow2;
}
vl c00 = convolution_ll(a0, b0);
vl c11 = convolution_ll(a1, b1);
rep(i, n) a0[i] += a1[i];
rep(i, m) b0[i] += b1[i];
vl c01 = convolution_ll(a0, b0);
rep(i, n + m - 1) {
c00[i] %= mod;
c11[i] %= mod;
c01[i] = (c01[i] - c00[i] - c11[i] + 2LL * mod) % mod;
}
vm c(n + m - 1);
rep(i, n + m - 1) {
c[i] = c00[i] + c01[i] * pow2 + c11[i] * pow2 * pow2;
}
return c;
}
//【形式的冪級数(法が大きな素数)】
/*
* MFPS() : O(1)
* 零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
* 定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
* n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
* f(x) = c[0] + c[1] x + ... + c[n - 1] x^(n-1) で初期化する.
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n^2) f * g_sp : O(n k)(k : g の項数)
* f / c : O(n) f / g : O(n^2) f / g_sp : O(n k)(k : g の項数)
* 形式的冪級数としての和,差,積,商の結果を返す.
* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
* 制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n^2)
* 1 / f mod x^d を返す.
* 制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n^2)
* MFPS f.reminder(MFPS g) : O(n^2)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n^2)
* 多項式としての f を g で割った商,余り,商と余りの組を返す.
* 制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
* 多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d) : O(d)
* 単項式 x^d を返す.
*
* mint f.assign(mint c) : O(n)
* 多項式 f の不定元 x に c を代入した値を返す.
*
* f.resize(int d) : O(1)
* mod x^d をとる.
*
* f.resize() : O(n)
* 不要な高次の項を削る.
*
* f >> d, f << d : O(n)
* 係数列を d だけ右[左]シフトした多項式を返す.
* (右シフトは x^d の乗算,左シフトは x^d で割った商と等価)
*
* MFPS power_mod(MFPS f, ll d, MFPS g) : O(m^2 log d) (m = deg g)
* f(x)^d mod g(x) を返す.
*/
struct MFPS {
using SMFPS = vector<pair<int, mint>>;
int n; // 係数の個数(次数 + 1)
vm c; // 係数列
// コンストラクタ(0,定数,係数列で初期化)
MFPS() : n(0) {}
MFPS(const mint& c0) : n(1), c({ c0 }) {}
MFPS(const int& c0) : n(1), c({ mint(c0) }) {}
MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
// 代入
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
// 比較
bool operator==(const MFPS& g) const { return c == g.c; }
bool operator!=(const MFPS& g) const { return c != g.c; }
// アクセス
mint const& operator[](int i) const { return c[i]; }
mint& operator[](int i) { return c[i]; }
// 次数
int deg() const { return n - 1; }
int size() const { return n; }
// 加算
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
// 定数加算
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
// 減算
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
// 定数減算
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
// 加法逆元
MFPS operator-() const { return MFPS(*this) *= -1; }
// 定数倍
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
// 右からの定数除算
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
// 積
MFPS& operator*=(const MFPS& g) { c = convolution_arbitrary_mod(c, g.c); n = sz(c); return *this; }
MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
// 除算
MFPS inv(int d) const {
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k *= 2) {
g = (2 - *this * g) * g;
g.resize(2 * k);
}
return g.resize(d);
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(n); }
MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
// 余り付き除算
MFPS quotient(const MFPS& g) const {
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
MFPS reminder(const MFPS& g) const {
return (*this - this->quotient(g) * g).resize(g.n - 1);
}
pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize(g.n - 1);
return res;
}
// スパース積
MFPS& operator*=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// 後ろからインライン配る DP
repir(i, n - 1, 0) {
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
// 定数項は最後に配るか消去しないといけない.
c[i] *= g0;
}
return *this;
}
MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
// スパース商
MFPS& operator/=(const SMFPS& g) {
// verify : https://atcoder.jp/contests/agc009/tasks/agc009_e
// g の定数項だけ例外処理
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// 前からインライン配る DP(後ろに累積効果あり)
rep(i, n) {
// 定数項は最初に配らないといけない.
c[i] *= g0_inv;
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
// 係数反転
MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
// 単項式
static MFPS monomial(int d) {
MFPS mono(0, d + 1);
mono[d] = 1;
return mono;
}
// 不要な高次項の除去
MFPS& resize() {
// 最高次の係数が非 0 になるまで削る.
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d 以上の項を除去する.
MFPS& resize(int d) {
// verify : https://atcoder.jp/contests/agc009/tasks/agc009_e
n = d;
c.resize(d);
return *this;
}
// 不定元への代入
mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
// 係数のシフト
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
// 累乗の剰余
friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) {
MFPS res(1), pow2(f);
while (d > 0) {
if (d & 1LL) res = (res * pow2).reminder(g);
pow2 = (pow2 * pow2).reminder(g);
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i].val() << "x^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//【展開係数】O(n log n log d)
/*
* 有理式 f(x)/g(x) を形式的冪級数に展開したときの x^d の係数を返す.
*
* 制約 : deg f < deg g, g[0] != 0
*/
mint bostan_mori(const MFPS& f, const MFPS& g, ll d) {
// 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
//【方法】
// 分母分子に g(-x) を掛けることにより
// f(x) / g(x) = f(x) g(-x) / g(x) g(-x)
// を得る.ここで g(x) g(-x) は偶多項式なので
// g(x) g(-x) = e(x^2)
// と表すことができる.
//
// 分子について
// f(x) g(-x) = E(x^2) + x O(x^2)
// というように偶多項式部分と奇多項式部分に分けると,d が偶数のときは
// [x^d] f(x) g(-x) / g(x) g(-x)
// = [x^d] E(x^2) / e(x^2)
// = [x^(d/2)] E(x) / e(x)
// となり,d が奇数のときは
// [x^d] f(x) g(-x) / g(x) g(-x)
// = [x^d] x O(x^2) / e(x^2)
// = [x^((d-1)/2)] O(x) / e(x)
// となる.
//
// これを繰り返せば d を半分ずつに減らしていくことができる.
Assert(g.n >= 1 && g[0] != 0);
// d = 0 のときは定数項を返す.
if (d == 0) return f[0] / g[0];
// f2(x) = f(x) g(-x), g2(x) = g(x) g(-x) を求める.
MFPS f2, g2 = g;
rep(i, g2.n) if (i % 2 == 1) g2[i] *= -1;
f2 = f * g2;
g2 *= g;
// f3(x) = E(x) or O(x), g3(x) = e(x) を求める.
MFPS f3, g3;
if (d % 2 == 0) {
for (int i = 0; 2 * i < f2.n; i++) {
f3.c.push_back(f2[2 * i]);
}
}
else {
for (int i = 0; 2 * i + 1 < f2.n; i++) {
f3.c.push_back(f2[2 * i + 1]);
}
}
f3.n = sz(f3.c);
rep(i, g.n) g3.c.push_back(g2[2 * i]);
g3.n = sz(g3.c);
// d を半分にして再帰を回す.
return bostan_mori(f3, g3, d / 2);
}
mint TLE(int n, ll m, vi a) {
MFPS f(1);
rep(i, n) f *= 1 - MFPS::monomial(a[i]);
return bostan_mori(MFPS(1), f, m);
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n; ll m;
cin >> n >> m;
vi a(n);
cin >> a;
MFPS f(1);
rep(i, n) f *= 1 - MFPS::monomial(a[i]);
cout << bostan_mori(MFPS(1), f, m) << endl;
}