結果
問題 | No.137 貯金箱の焦り |
ユーザー | ecottea |
提出日時 | 2023-01-24 16:12:00 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 16,523 bytes |
コンパイル時間 | 4,517 ms |
コンパイル使用メモリ | 244,596 KB |
実行使用メモリ | 50,308 KB |
最終ジャッジ日時 | 2024-06-26 04:15:46 |
合計ジャッジ時間 | 11,689 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
6,812 KB |
testcase_01 | AC | 5 ms
6,816 KB |
testcase_02 | AC | 34 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 213 ms
6,940 KB |
testcase_05 | AC | 39 ms
6,944 KB |
testcase_06 | AC | 102 ms
6,940 KB |
testcase_07 | AC | 50 ms
6,944 KB |
testcase_08 | AC | 53 ms
6,940 KB |
testcase_09 | AC | 109 ms
6,940 KB |
testcase_10 | AC | 51 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | TLE | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-12; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); using mint = static_modint<1234567891>; istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif //【畳込み(法が任意)】O((n + m) log (n + m)) /* * a と b の mod を法とした畳込みを返す. */ vm convolution_arbitrary_mod(const vm& a, const vm& b) { int n = sz(a), m = sz(b); int mod = mint::mod(); vl a0(n), a1(n), b0(m), b1(m); const int pow2 = 1 << 15; rep(i, n) { int ai = a[i].val(); a0[i] = ai % pow2; a1[i] = ai / pow2; } rep(i, m) { int bi = b[i].val(); b0[i] = bi % pow2; b1[i] = bi / pow2; } vl c00 = convolution_ll(a0, b0); vl c11 = convolution_ll(a1, b1); rep(i, n) a0[i] += a1[i]; rep(i, m) b0[i] += b1[i]; vl c01 = convolution_ll(a0, b0); rep(i, n + m - 1) { c00[i] %= mod; c11[i] %= mod; c01[i] = (c01[i] - c00[i] - c11[i] + 2LL * mod) % mod; } vm c(n + m - 1); rep(i, n + m - 1) { c[i] = c00[i] + c01[i] * pow2 + c11[i] * pow2 * pow2; } return c; } //【形式的冪級数(法が大きな素数)】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(x) = c[0] + c[1] x + ... + c[n - 1] x^(n-1) で初期化する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n^2) f * g_sp : O(n k)(k : g の項数) * f / c : O(n) f / g : O(n^2) f / g_sp : O(n k)(k : g の項数) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n^2) * 1 / f mod x^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n^2) * MFPS f.reminder(MFPS g) : O(n^2) * pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n^2) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d) : O(d) * 単項式 x^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 x に c を代入した値を返す. * * f.resize(int d) : O(1) * mod x^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは x^d の乗算,左シフトは x^d で割った商と等価) * * MFPS power_mod(MFPS f, ll d, MFPS g) : O(m^2 log d) (m = deg g) * f(x)^d mod g(x) を返す. */ struct MFPS { using SMFPS = vector<pair<int, mint>>; int n; // 係数の個数(次数 + 1) vm c; // 係数列 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(const mint& c0) : n(1), c({ c0 }) {} MFPS(const int& c0) : n(1), c({ mint(c0) }) {} MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } // 比較 bool operator==(const MFPS& g) const { return c == g.c; } bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス mint const& operator[](int i) const { return c[i]; } mint& operator[](int i) { return c[i]; } // 次数 int deg() const { return n - 1; } int size() const { return n; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = convolution_arbitrary_mod(c, g.c); n = sz(c); return *this; } MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 MFPS inv(int d) const { Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k *= 2) { g = (2 - *this * g) * g; g.resize(2 * k); } return g.resize(d); } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(n); } MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 MFPS quotient(const MFPS& g) const { if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } MFPS reminder(const MFPS& g) const { return (*this - this->quotient(g) * g).resize(g.n - 1); } pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const { pair<MFPS, MFPS> res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(g.n - 1); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { int j; mint gj; tie(j, gj) = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // verify : https://atcoder.jp/contests/agc009/tasks/agc009_e // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { int j; mint gj; tie(j, gj) = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 static MFPS monomial(int d) { MFPS mono(0, d + 1); mono[d] = 1; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { // verify : https://atcoder.jp/contests/agc009/tasks/agc009_e n = d; c.resize(d); return *this; } // 不定元への代入 mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } MFPS operator>>(int d) const { return MFPS(*this) >>= d; } MFPS operator<<(int d) const { return MFPS(*this) <<= d; } // 累乗の剰余 friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) { MFPS res(1), pow2(f); while (d > 0) { if (d & 1LL) res = (res * pow2).reminder(g); pow2 = (pow2 * pow2).reminder(g); d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i].val() << "x^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【展開係数】O(n log n log d) /* * 有理式 f(x)/g(x) を形式的冪級数に展開したときの x^d の係数を返す. * * 制約 : deg f < deg g, g[0] != 0 */ mint bostan_mori(const MFPS& f, const MFPS& g, ll d) { // 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci //【方法】 // 分母分子に g(-x) を掛けることにより // f(x) / g(x) = f(x) g(-x) / g(x) g(-x) // を得る.ここで g(x) g(-x) は偶多項式なので // g(x) g(-x) = e(x^2) // と表すことができる. // // 分子について // f(x) g(-x) = E(x^2) + x O(x^2) // というように偶多項式部分と奇多項式部分に分けると,d が偶数のときは // [x^d] f(x) g(-x) / g(x) g(-x) // = [x^d] E(x^2) / e(x^2) // = [x^(d/2)] E(x) / e(x) // となり,d が奇数のときは // [x^d] f(x) g(-x) / g(x) g(-x) // = [x^d] x O(x^2) / e(x^2) // = [x^((d-1)/2)] O(x) / e(x) // となる. // // これを繰り返せば d を半分ずつに減らしていくことができる. Assert(g.n >= 1 && g[0] != 0); // d = 0 のときは定数項を返す. if (d == 0) return f[0] / g[0]; // f2(x) = f(x) g(-x), g2(x) = g(x) g(-x) を求める. MFPS f2, g2 = g; rep(i, g2.n) if (i % 2 == 1) g2[i] *= -1; f2 = f * g2; g2 *= g; // f3(x) = E(x) or O(x), g3(x) = e(x) を求める. MFPS f3, g3; if (d % 2 == 0) { for (int i = 0; 2 * i < f2.n; i++) { f3.c.push_back(f2[2 * i]); } } else { for (int i = 0; 2 * i + 1 < f2.n; i++) { f3.c.push_back(f2[2 * i + 1]); } } f3.n = sz(f3.c); rep(i, g.n) g3.c.push_back(g2[2 * i]); g3.n = sz(g3.c); // d を半分にして再帰を回す. return bostan_mori(f3, g3, d / 2); } mint TLE(int n, ll m, vi a) { MFPS f(1); rep(i, n) f *= 1 - MFPS::monomial(a[i]); return bostan_mori(MFPS(1), f, m); } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; ll m; cin >> n >> m; vi a(n); cin >> a; MFPS f(1); rep(i, n) f *= 1 - MFPS::monomial(a[i]); cout << bostan_mori(MFPS(1), f, m) << endl; }