結果
問題 | No.1270 Range Arrange Query |
ユーザー | maspy |
提出日時 | 2023-01-25 06:00:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 678 ms / 7,000 ms |
コード長 | 23,205 bytes |
コンパイル時間 | 4,974 ms |
コンパイル使用メモリ | 261,872 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-26 11:50:22 |
合計ジャッジ時間 | 8,032 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 46 ms
5,376 KB |
testcase_07 | AC | 391 ms
5,376 KB |
testcase_08 | AC | 61 ms
5,376 KB |
testcase_09 | AC | 265 ms
5,376 KB |
testcase_10 | AC | 277 ms
5,376 KB |
testcase_11 | AC | 676 ms
5,376 KB |
testcase_12 | AC | 675 ms
5,376 KB |
testcase_13 | AC | 678 ms
5,376 KB |
testcase_14 | AC | 15 ms
5,376 KB |
testcase_15 | AC | 30 ms
5,376 KB |
testcase_16 | AC | 30 ms
5,376 KB |
testcase_17 | AC | 30 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1270" #line 1 "library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<ll, ll>; using vi = vector<ll>; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace fastio { #define FASTIO // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template <class T> static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) { }; struct has_read_impl { template <class T> static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <typename T, typename enable_if<has_read<T>::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <size_t N = 0, typename T> void read_single_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); read_single(x); read_single_tuple<N + 1>(t); } } template <class... T> bool read_single(tuple<T...> &tpl) { read_single_tuple(tpl); return true; } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <typename T, typename enable_if<has_write<T>::value>::type * = nullptr> inline void write(T x) { x.write(); } template <class T> void write(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> val) { write(val.first); write(' '); write(val.second); } template <size_t N = 0, typename T> void write_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get<N>(t); write(x); write_tuple<N + 1>(t); } } template <class... T> bool write(tuple<T...> tpl) { write_tuple(tpl); return true; } template <class T, size_t S> void write(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/alg/monoid/add.hpp" template <typename X> struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "library/ds/fenwicktree/fenwicktree.hpp" template <typename Monoid> struct FenwickTree { using G = Monoid; using E = typename G::value_type; int n; vector<E> dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template <typename F> FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc<E>& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc<E>& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template <typename F> void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } template <class F> int max_right(const F check) { assert(check(G::unit())); int i = 0; E s = G::unit(); int k = 1; while (2 * k <= n) k *= 2; while (k) { if (i + k - 1 < len(dat)) { E t = G::op(s, dat[i + k - 1]); if (check(t)) { i += k, s = t; } } k >>= 1; } return i; } int kth(E k) { return max_right([&k](E x) -> bool { return x <= k; }); } }; #line 1 "library/ds/offline_query/mo.hpp" struct Mo { vc<pair<int, int>> LR; void add(int L, int R) { LR.emplace_back(L, R); } vc<int> get_mo_order() { int N = 1; for (auto &&[l, r]: LR) chmax(N, r); int Q = len(LR); int bs = N / min<int>(N, sqrt(Q)); vc<int> I(Q); iota(all(I), 0); sort(all(I), [&](int a, int b) { int aa = LR[a].fi / bs, bb = LR[b].fi / bs; if (aa != bb) return aa < bb; return (aa & 1) ? LR[a].se > LR[b].se : LR[a].se < LR[b].se; }); auto cost = [&](int a, int b) -> int { return abs(LR[I[a]].fi - LR[I[b]].fi) + abs(LR[I[a]].se - LR[I[b]].se); }; FOR(2) { FOR(k, Q - 5) { if (cost(k, k + 2) + cost(k + 1, k + 3) < cost(k, k + 1) + cost(k + 2, k + 3)) { swap(I[k + 1], I[k + 2]); } if (cost(k, k + 3) + cost(k + 1, k + 4) < cost(k, k + 1) + cost(k + 3, k + 4)) { swap(I[k + 1], I[k + 3]); } } } return I; } template <typename AL, typename AR, typename EL, typename ER, typename O> void calc(const AL &add_left, const AR &add_right, const EL &erase_left, const ER &erase_right, const O &query) { auto I = get_mo_order(); int l = 0, r = 0; for (auto idx: I) { while (l > LR[idx].fi) add_left(--l); while (r < LR[idx].se) add_right(r++); while (l < LR[idx].fi) erase_left(l++); while (r > LR[idx].se) erase_right(--r); query(idx); } } template <typename A, typename E, typename O> void calc(const A &add, const E &erase, const O &query) { calc(add, add, erase, erase, query); } }; #line 6 "main.cpp" #line 2 "library/ds/segtree/lazy_segtree.hpp" template <typename ActedMonoid> struct Lazy_SegTree { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename MX::value_type; using A = typename MA::value_type; int n, log, size; vc<X> dat; vc<A> laz; Lazy_SegTree() {} Lazy_SegTree(int n) { build(n); } template <typename F> Lazy_SegTree(int n, F f) { build(n, f); } Lazy_SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); laz.assign(size, MA::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); } void set(int p, X x) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); dat[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } X get(int p) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return dat[p]; } vc<X> get_all() { FOR(k, 1, size) { push(k); } return {dat.begin() + size, dat.begin() + size + n}; } X prod(int l, int r) { assert(0 <= l && l <= r && r <= n); if (l == r) return MX::unit(); l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } X xl = MX::unit(); X xr = MX::unit(); while (l < r) { if (l & 1) xl = MX::op(xl, dat[l++]); if (r & 1) xr = MX::op(dat[--r], xr); l >>= 1, r >>= 1; } return MX::op(xl, xr); } X prod_all() { return dat[1]; } void apply(int l, int r, A a) { assert(0 <= l && l <= r && r <= n); if (l == r) return; l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } int l2 = l, r2 = r; while (l < r) { if (l & 1) apply_at(l++, a); if (r & 1) apply_at(--r, a); l >>= 1, r >>= 1; } l = l2, r = r2; for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <typename F> int max_right(const F check, int l) { assert(0 <= l && l <= n); assert(check(MX::unit())); if (l == n) return n; l += size; for (int i = log; i >= 1; i--) push(l >> i); X sm = MX::unit(); do { while (l % 2 == 0) l >>= 1; if (!check(MX::op(sm, dat[l]))) { while (l < size) { push(l); l = (2 * l); if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); } } return l - size; } sm = MX::op(sm, dat[l++]); } while ((l & -l) != l); return n; } template <typename F> int min_left(const F check, int r) { assert(0 <= r && r <= n); assert(check(MX::unit())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); X sm = MX::unit(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!check(MX::op(dat[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); } } return r + 1 - size; } sm = MX::op(dat[r], sm); } while ((r & -r) != r); return 0; } private: void apply_at(int k, A a) { ll sz = 1 << (log - topbit(k)); dat[k] = AM::act(dat[k], a, sz); if (k < size) laz[k] = MA::op(laz[k], a); } void push(int k) { if (laz[k] == MA::unit()) return; apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]); laz[k] = MA::unit(); } }; #line 2 "library/alg/monoid/min.hpp" template <class X> struct Monoid_Min { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return numeric_limits<X>::max(); } static constexpr bool commute = true; }; #line 3 "library/alg/acted_monoid/min_add.hpp" template <typename E> struct ActedMonoid_Min_Add { using Monoid_X = Monoid_Min<E>; using Monoid_A = Monoid_Add<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { if (x == numeric_limits<E>::max()) return x; return x + a; } }; #line 9 "main.cpp" void solve() { LL(N, Q); VEC(int, A, N); for (auto&& x: A) --x; vi ANS(Q); FenwickTree<Monoid_Add<int>> bit_l(N), bit_r(N); using AM = ActedMonoid_Min_Add<int>; Lazy_SegTree<AM> seg(N, [&](int i) -> int { return 0; }); int ans = 0; for (auto&& x: A) { ans += bit_r.sum(x + 1, N); bit_r.add(x, 1); seg.apply(x + 1, N, 1); } int sz = 0; Mo mo; FOR(q, Q) { LL(l, r); mo.add(--l, r); } auto ADD_L = [&](int i) -> void { int x = A[i]; ans -= bit_l.sum(x + 1, N); ans -= bit_r.sum(0, x); bit_l.add(x, -1); seg.apply(0, x, -1); ++sz; }; auto ADD_R = [&](int i) -> void { int x = A[i]; ans -= bit_r.sum(0, x); ans -= bit_l.sum(x + 1, N); bit_r.add(x, -1); seg.apply(x + 1, N, -1); ++sz; }; auto RM_L = [&](int i) -> void { int x = A[i]; ans += bit_l.sum(x + 1, N); ans += bit_r.sum(0, x); bit_l.add(x, 1); seg.apply(0, x, 1); --sz; }; auto RM_R = [&](int i) -> void { int x = A[i]; ans += bit_r.sum(0, x); ans += bit_l.sum(x + 1, N); bit_r.add(x, 1); seg.apply(x + 1, N, 1); --sz; }; auto CALC = [&](int q) -> void { ANS[q] = ans + seg.prod_all() * sz; }; mo.calc(ADD_L, ADD_R, RM_L, RM_R, CALC); for (auto&& x: ANS) print(x); } signed main() { solve(); return 0; }