結果

問題 No.1270 Range Arrange Query
ユーザー maspymaspy
提出日時 2023-01-25 06:00:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 678 ms / 7,000 ms
コード長 23,205 bytes
コンパイル時間 4,974 ms
コンパイル使用メモリ 261,872 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-26 11:50:22
合計ジャッジ時間 8,032 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 46 ms
5,376 KB
testcase_07 AC 391 ms
5,376 KB
testcase_08 AC 61 ms
5,376 KB
testcase_09 AC 265 ms
5,376 KB
testcase_10 AC 277 ms
5,376 KB
testcase_11 AC 676 ms
5,376 KB
testcase_12 AC 675 ms
5,376 KB
testcase_13 AC 678 ms
5,376 KB
testcase_14 AC 15 ms
5,376 KB
testcase_15 AC 30 ms
5,376 KB
testcase_16 AC 30 ms
5,376 KB
testcase_17 AC 30 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1270"
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/alg/monoid/add.hpp"

template <typename X>
struct Monoid_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check) {
    assert(check(G::unit()));
    int i = 0;
    E s = G::unit();
    int k = 1;
    while (2 * k <= n) k *= 2;
    while (k) {
      if (i + k - 1 < len(dat)) {
        E t = G::op(s, dat[i + k - 1]);
        if (check(t)) { i += k, s = t; }
      }
      k >>= 1;
    }
    return i;
  }

  int kth(E k) {
    return max_right([&k](E x) -> bool { return x <= k; });
  }
};
#line 1 "library/ds/offline_query/mo.hpp"
struct Mo {
  vc<pair<int, int>> LR;
  void add(int L, int R) { LR.emplace_back(L, R); }

  vc<int> get_mo_order() {
    int N = 1;
    for (auto &&[l, r]: LR) chmax(N, r);
    int Q = len(LR);
    int bs = N / min<int>(N, sqrt(Q));
    vc<int> I(Q);
    iota(all(I), 0);
    sort(all(I), [&](int a, int b) {
      int aa = LR[a].fi / bs, bb = LR[b].fi / bs;
      if (aa != bb) return aa < bb;
      return (aa & 1) ? LR[a].se > LR[b].se : LR[a].se < LR[b].se;
    });

    auto cost = [&](int a, int b) -> int {
      return abs(LR[I[a]].fi - LR[I[b]].fi) + abs(LR[I[a]].se - LR[I[b]].se);
    };

    FOR(2) {
      FOR(k, Q - 5) {
        if (cost(k, k + 2) + cost(k + 1, k + 3)
            < cost(k, k + 1) + cost(k + 2, k + 3)) {
          swap(I[k + 1], I[k + 2]);
        }
        if (cost(k, k + 3) + cost(k + 1, k + 4)
            < cost(k, k + 1) + cost(k + 3, k + 4)) {
          swap(I[k + 1], I[k + 3]);
        }
      }
    }
    return I;
  }

  template <typename AL, typename AR, typename EL, typename ER, typename O>
  void calc(const AL &add_left, const AR &add_right, const EL &erase_left,
            const ER &erase_right, const O &query) {
    auto I = get_mo_order();
    int l = 0, r = 0;
    for (auto idx: I) {
      while (l > LR[idx].fi) add_left(--l);
      while (r < LR[idx].se) add_right(r++);
      while (l < LR[idx].fi) erase_left(l++);
      while (r > LR[idx].se) erase_right(--r);
      query(idx);
    }
  }

  template <typename A, typename E, typename O>
  void calc(const A &add, const E &erase, const O &query) {
    calc(add, add, erase, erase, query);
  }
};
#line 6 "main.cpp"

#line 2 "library/ds/segtree/lazy_segtree.hpp"

template <typename ActedMonoid>
struct Lazy_SegTree {
  using AM = ActedMonoid;
  using MX = typename AM::Monoid_X;
  using MA = typename AM::Monoid_A;
  using X = typename MX::value_type;
  using A = typename MA::value_type;
  int n, log, size;
  vc<X> dat;
  vc<A> laz;

  Lazy_SegTree() {}
  Lazy_SegTree(int n) { build(n); }
  template <typename F>
  Lazy_SegTree(int n, F f) {
    build(n, f);
  }
  Lazy_SegTree(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, MX::unit());
    laz.assign(size, MA::unit());
    FOR(i, n) dat[size + i] = f(i);
    FOR_R(i, 1, size) update(i);
  }

  void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }
  void set(int p, X x) {
    assert(0 <= p && p < n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    dat[p] = x;
    for (int i = 1; i <= log; i++) update(p >> i);
  }

  X get(int p) {
    assert(0 <= p && p < n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    return dat[p];
  }

  vc<X> get_all() {
    FOR(k, 1, size) { push(k); }
    return {dat.begin() + size, dat.begin() + size + n};
  }

  X prod(int l, int r) {
    assert(0 <= l && l <= r && r <= n);
    if (l == r) return MX::unit();
    l += size, r += size;
    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push((r - 1) >> i);
    }
    X xl = MX::unit();
    X xr = MX::unit();
    while (l < r) {
      if (l & 1) xl = MX::op(xl, dat[l++]);
      if (r & 1) xr = MX::op(dat[--r], xr);
      l >>= 1, r >>= 1;
    }
    return MX::op(xl, xr);
  }

  X prod_all() { return dat[1]; }

  void apply(int l, int r, A a) {
    assert(0 <= l && l <= r && r <= n);
    if (l == r) return;
    l += size, r += size;
    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push((r - 1) >> i);
    }
    int l2 = l, r2 = r;
    while (l < r) {
      if (l & 1) apply_at(l++, a);
      if (r & 1) apply_at(--r, a);
      l >>= 1, r >>= 1;
    }
    l = l2, r = r2;
    for (int i = 1; i <= log; i++) {
      if (((l >> i) << i) != l) update(l >> i);
      if (((r >> i) << i) != r) update((r - 1) >> i);
    }
  }

  template <typename F>
  int max_right(const F check, int l) {
    assert(0 <= l && l <= n);
    assert(check(MX::unit()));
    if (l == n) return n;
    l += size;
    for (int i = log; i >= 1; i--) push(l >> i);
    X sm = MX::unit();
    do {
      while (l % 2 == 0) l >>= 1;
      if (!check(MX::op(sm, dat[l]))) {
        while (l < size) {
          push(l);
          l = (2 * l);
          if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }
        }
        return l - size;
      }
      sm = MX::op(sm, dat[l++]);
    } while ((l & -l) != l);
    return n;
  }

  template <typename F>
  int min_left(const F check, int r) {
    assert(0 <= r && r <= n);
    assert(check(MX::unit()));
    if (r == 0) return 0;
    r += size;
    for (int i = log; i >= 1; i--) push((r - 1) >> i);
    X sm = MX::unit();
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!check(MX::op(dat[r], sm))) {
        while (r < size) {
          push(r);
          r = (2 * r + 1);
          if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }
        }
        return r + 1 - size;
      }
      sm = MX::op(dat[r], sm);
    } while ((r & -r) != r);
    return 0;
  }

private:
  void apply_at(int k, A a) {
    ll sz = 1 << (log - topbit(k));
    dat[k] = AM::act(dat[k], a, sz);
    if (k < size) laz[k] = MA::op(laz[k], a);
  }
  void push(int k) {
    if (laz[k] == MA::unit()) return;
    apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);
    laz[k] = MA::unit();
  }
};
#line 2 "library/alg/monoid/min.hpp"

template <class X>
struct Monoid_Min {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
  static constexpr X unit() { return numeric_limits<X>::max(); }
  static constexpr bool commute = true;
};
#line 3 "library/alg/acted_monoid/min_add.hpp"

template <typename E>
struct ActedMonoid_Min_Add {
  using Monoid_X = Monoid_Min<E>;
  using Monoid_A = Monoid_Add<E>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X &x, const A &a, const ll &size) {
    if (x == numeric_limits<E>::max()) return x;
    return x + a;
  }
};
#line 9 "main.cpp"

void solve() {
  LL(N, Q);
  VEC(int, A, N);
  for (auto&& x: A) --x;

  vi ANS(Q);
  FenwickTree<Monoid_Add<int>> bit_l(N), bit_r(N);
  using AM = ActedMonoid_Min_Add<int>;
  Lazy_SegTree<AM> seg(N, [&](int i) -> int { return 0; });
  int ans = 0;
  for (auto&& x: A) {
    ans += bit_r.sum(x + 1, N);
    bit_r.add(x, 1);
    seg.apply(x + 1, N, 1);
  }
  int sz = 0;

  Mo mo;
  FOR(q, Q) {
    LL(l, r);
    mo.add(--l, r);
  }

  auto ADD_L = [&](int i) -> void {
    int x = A[i];
    ans -= bit_l.sum(x + 1, N);
    ans -= bit_r.sum(0, x);
    bit_l.add(x, -1);
    seg.apply(0, x, -1);
    ++sz;
  };
  auto ADD_R = [&](int i) -> void {
    int x = A[i];
    ans -= bit_r.sum(0, x);
    ans -= bit_l.sum(x + 1, N);
    bit_r.add(x, -1);
    seg.apply(x + 1, N, -1);
    ++sz;
  };
  auto RM_L = [&](int i) -> void {
    int x = A[i];
    ans += bit_l.sum(x + 1, N);
    ans += bit_r.sum(0, x);
    bit_l.add(x, 1);
    seg.apply(0, x, 1);
    --sz;
  };
  auto RM_R = [&](int i) -> void {
    int x = A[i];
    ans += bit_r.sum(0, x);
    ans += bit_l.sum(x + 1, N);
    bit_r.add(x, 1);
    seg.apply(x + 1, N, 1);
    --sz;
  };
  auto CALC = [&](int q) -> void { ANS[q] = ans + seg.prod_all() * sz; };
  mo.calc(ADD_L, ADD_R, RM_L, RM_R, CALC);
  for (auto&& x: ANS) print(x);
}

signed main() {
  solve();

  return 0;
}
0