結果
問題 | No.1145 Sums of Powers |
ユーザー | suisen |
提出日時 | 2023-01-25 18:20:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 404 ms / 2,000 ms |
コード長 | 43,032 bytes |
コンパイル時間 | 3,737 ms |
コンパイル使用メモリ | 160,852 KB |
実行使用メモリ | 25,740 KB |
最終ジャッジ日時 | 2024-06-26 21:28:30 |
合計ジャッジ時間 | 5,521 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 404 ms
25,740 KB |
testcase_04 | AC | 394 ms
25,484 KB |
testcase_05 | AC | 402 ms
25,588 KB |
ソースコード
#include <iostream> #include <atcoder/modint> using mint = atcoder::modint998244353; std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } #include <limits> #include <optional> #include <queue> #include <atcoder/modint> #include <atcoder/convolution> #include <cassert> #include <cmath> #include <type_traits> #include <vector> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; } // namespace suisen /** * refernce: https://37zigen.com/tonelli-shanks-algorithm/ * calculates x s.t. x^2 = a mod p in O((log p)^2). */ template <typename mint> std::optional<mint> safe_sqrt(mint a) { static int p = mint::mod(); if (a == 0) return std::make_optional(0); if (p == 2) return std::make_optional(a); if (a.pow((p - 1) / 2) != 1) return std::nullopt; mint b = 1; while (b.pow((p - 1) / 2) == 1) ++b; static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz; mint x = a.pow((q + 1) / 2); b = b.pow(q); for (int shift = 2; x * x != a; ++shift) { mint e = a.inv() * x * x; if (e.pow(1 << (tlz - shift)) != 1) x *= b; b *= b; } return std::make_optional(x); } /** * calculates x s.t. x^2 = a mod p in O((log p)^2). * if not exists, raises runtime error. */ template <typename mint> auto sqrt(mint a) -> decltype(mint::mod(), mint()) { return *safe_sqrt(a); } template <typename mint> auto log(mint a) -> decltype(mint::mod(), mint()) { assert(a == 1); return 0; } template <typename mint> auto exp(mint a) -> decltype(mint::mod(), mint()) { assert(a == 0); return 1; } template <typename mint, typename T> auto pow(mint a, T b) -> decltype(mint::mod(), mint()) { return a.pow(b); } template <typename mint> auto inv(mint a) -> decltype(mint::mod(), mint()) { return a.inv(); } namespace suisen { template <typename mint> class inv_mods { public: inv_mods() {} inv_mods(int n) { ensure(n); } const mint& operator[](int i) const { ensure(i); return invs[i]; } static void ensure(int n) { int sz = invs.size(); if (sz < 2) invs = { 0, 1 }, sz = 2; if (sz < n + 1) { invs.resize(n + 1); for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i]; } } private: static std::vector<mint> invs; static constexpr int mod = mint::mod(); }; template <typename mint> std::vector<mint> inv_mods<mint>::invs{}; template <typename mint> std::vector<mint> get_invs(const std::vector<mint>& vs) { const int n = vs.size(); mint p = 1; for (auto& e : vs) { p *= e; assert(e != 0); } mint ip = p.inv(); std::vector<mint> rp(n + 1); rp[n] = 1; for (int i = n - 1; i >= 0; --i) { rp[i] = rp[i + 1] * vs[i]; } std::vector<mint> res(n); for (int i = 0; i < n; ++i) { res[i] = ip * rp[i + 1]; ip *= vs[i]; } return res; } } namespace suisen { template <typename T> struct FPSNaive : std::vector<T> { static inline int MAX_SIZE = std::numeric_limits<int>::max() / 2; using value_type = T; using element_type = rec_value_type_t<T>; using std::vector<value_type>::vector; FPSNaive(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {} FPSNaive(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {} static void set_max_size(int n) { FPSNaive<T>::MAX_SIZE = n; } const value_type operator[](int n) const { return n <= deg() ? unsafe_get(n) : value_type{ 0 }; } value_type& operator[](int n) { return ensure_deg(n), unsafe_get(n); } int size() const { return std::vector<value_type>::size(); } int deg() const { return size() - 1; } int normalize() { while (size() and this->back() == value_type{ 0 }) this->pop_back(); return deg(); } FPSNaive& cut_inplace(int n) { if (size() > n) this->resize(std::max(0, n)); return *this; } FPSNaive cut(int n) const { FPSNaive f = FPSNaive(*this).cut_inplace(n); return f; } FPSNaive operator+() const { return FPSNaive(*this); } FPSNaive operator-() const { FPSNaive f(*this); for (auto& e : f) e = -e; return f; } FPSNaive& operator++() { return ++(*this)[0], * this; } FPSNaive& operator--() { return --(*this)[0], * this; } FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; } FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; } FPSNaive& operator+=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPSNaive& operator-=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; } FPSNaive& operator*=(const value_type x) { for (auto& e : *this) e *= x; return *this; } FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; } FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; } FPSNaive& operator<<=(const int shamt) { this->insert(this->begin(), shamt, value_type{ 0 }); return *this; } FPSNaive& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; } friend FPSNaive operator+(FPSNaive f, const value_type& x) { f += x; return f; } friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; } friend FPSNaive operator-(FPSNaive f, const value_type& x) { f -= x; return f; } friend FPSNaive operator*(const FPSNaive& f, const FPSNaive& g) { if (f.empty() or g.empty()) return FPSNaive{}; const int n = f.size(), m = g.size(); FPSNaive h(std::min(MAX_SIZE, n + m - 1)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) { if (i + j >= MAX_SIZE) break; h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j); } return h; } friend FPSNaive operator*(FPSNaive f, const value_type& x) { f *= x; return f; } friend FPSNaive operator/(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).first); } friend FPSNaive operator%(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).second); } friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; } friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; } friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; } std::pair<FPSNaive, FPSNaive> div_mod(FPSNaive g) const { FPSNaive f = *this; const int fd = f.normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return { FPSNaive{}, f }; if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} }; const int k = f.deg() - gd; value_type head_inv = g.unsafe_get(gd).inv(); FPSNaive q(k + 1); for (int i = k; i >= 0; --i) { value_type div = f.unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j); } return { q, f.cut_inplace(gd) }; } friend bool operator==(const FPSNaive& f, const FPSNaive& g) { const int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } friend bool operator!=(const FPSNaive& f, const FPSNaive& g) { return not (f == g); } FPSNaive mul(const FPSNaive& g, int n = -1) const { if (n < 0) n = size(); if (this->empty() or g.empty()) return FPSNaive{}; const int m = size(), k = g.size(); FPSNaive h(std::min(n, m + k - 1)); for (int i = 0; i < m; ++i) { for (int j = 0, jr = std::min(k, n - i); j < jr; ++j) { h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j); } } return h; } FPSNaive diff() const { if (this->empty()) return {}; FPSNaive g(size() - 1); for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i; return g; } FPSNaive intg() const { const int n = size(); FPSNaive g(n + 1); for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; if (g.deg() > MAX_SIZE) g.cut_inplace(MAX_SIZE); return g; } FPSNaive inv(int n = -1) const { if (n < 0) n = size(); FPSNaive g(n); const value_type inv_f0 = ::inv(unsafe_get(0)); g.unsafe_get(0) = inv_f0; for (int i = 1; i < n; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= inv_f0; } return g; } FPSNaive exp(int n = -1) const { if (n < 0) n = size(); assert(unsafe_get(0) == value_type{ 0 }); FPSNaive g(n); g.unsafe_get(0) = value_type{ 1 }; for (int i = 1; i < n; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive log(int n = -1) const { if (n < 0) n = size(); assert(unsafe_get(0) == value_type{ 1 }); FPSNaive g(n); g.unsafe_get(0) = value_type{ 0 }; for (int i = 1; i < n; ++i) { g.unsafe_get(i) = i * (*this)[i]; for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive pow(const long long k, int n = -1) const { if (n < 0) n = size(); if (k == 0) { FPSNaive res(n); res[0] = 1; return res; } int z = 0; while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z; if (z == size() or z > (n - 1) / k) return FPSNaive(n, 0); const int m = n - z * k; FPSNaive g(m); const value_type inv_f0 = ::inv(unsafe_get(z)); g.unsafe_get(0) = unsafe_get(z).pow(k); for (int i = 1; i < m; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } *j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j]; g.unsafe_get(i) *= inv_f0 * invs[i]; } g <<= z * k; return g; } std::optional<FPSNaive> safe_sqrt(int n = -1) const { if (n < 0) n = size(); int dl = 0; while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl; if (dl == size()) return FPSNaive(n, 0); if (dl & 1) return std::nullopt; const int m = n - dl / 2; FPSNaive g(m); auto opt_g0 = ::safe_sqrt((*this)[dl]); if (not opt_g0.has_value()) return std::nullopt; g.unsafe_get(0) = *opt_g0; value_type inv_2g0 = ::inv(2 * g.unsafe_get(0)); for (int i = 1; i < m; ++i) { g.unsafe_get(i) = (*this)[dl + i]; for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j); g.unsafe_get(i) *= inv_2g0; } g <<= dl / 2; return g; } FPSNaive sqrt(int n = -1) const { if (n < 0) n = size(); return *safe_sqrt(n); } value_type eval(value_type x) const { value_type y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i); return y; } private: static inline inv_mods<element_type> invs; void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, value_type{ 0 }); } const value_type& unsafe_get(int i) const { return std::vector<value_type>::operator[](i); } value_type& unsafe_get(int i) { return std::vector<value_type>::operator[](i); } }; } // namespace suisen template <typename mint> suisen::FPSNaive<mint> sqrt(suisen::FPSNaive<mint> a) { return a.sqrt(); } template <typename mint> suisen::FPSNaive<mint> log(suisen::FPSNaive<mint> a) { return a.log(); } template <typename mint> suisen::FPSNaive<mint> exp(suisen::FPSNaive<mint> a) { return a.exp(); } template <typename mint, typename T> suisen::FPSNaive<mint> pow(suisen::FPSNaive<mint> a, T b) { return a.pow(b); } template <typename mint> suisen::FPSNaive<mint> inv(suisen::FPSNaive<mint> a) { return a.inv(); } namespace suisen { template <typename mint, atcoder::internal::is_static_modint_t<mint>* = nullptr> struct FormalPowerSeries : std::vector<mint> { using base_type = std::vector<mint>; using value_type = typename base_type::value_type; using base_type::vector; FormalPowerSeries(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {} FormalPowerSeries(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {} int size() const noexcept { return base_type::size(); } int deg() const noexcept { return size() - 1; } void ensure(int n) { if (size() < n) this->resize(n); } value_type safe_get(int d) const { return d <= deg() ? (*this)[d] : 0; } value_type& safe_get(int d) { ensure(d + 1); return (*this)[d]; } FormalPowerSeries& cut_trailing_zeros() { while (size() and this->back() == 0) this->pop_back(); return *this; } FormalPowerSeries& cut(int n) { if (size() > n) this->resize(std::max(0, n)); return *this; } FormalPowerSeries cut_copy(int n) const { FormalPowerSeries res(this->begin(), this->begin() + std::min(size(), n)); res.ensure(n); return res; } FormalPowerSeries cut_copy(int l, int r) const { if (l >= size()) return FormalPowerSeries(r - l, 0); FormalPowerSeries res(this->begin() + l, this->begin() + std::min(size(), r)); res.ensure(r - l); return res; } /* Unary Operations */ FormalPowerSeries operator+() const { return *this; } FormalPowerSeries operator-() const { FormalPowerSeries res = *this; for (auto& e : res) e = -e; return res; } FormalPowerSeries& operator++() { return ++safe_get(0), * this; } FormalPowerSeries& operator--() { return --safe_get(0), * this; } FormalPowerSeries operator++(int) { FormalPowerSeries res = *this; ++(*this); return res; } FormalPowerSeries operator--(int) { FormalPowerSeries res = *this; --(*this); return res; } /* Binary Operations With Constant */ FormalPowerSeries& operator+=(const value_type& x) { return safe_get(0) += x, *this; } FormalPowerSeries& operator-=(const value_type& x) { return safe_get(0) -= x, *this; } FormalPowerSeries& operator*=(const value_type& x) { for (auto& e : *this) e *= x; return *this; } FormalPowerSeries& operator/=(const value_type& x) { return *this *= x.inv(); } friend FormalPowerSeries operator+(FormalPowerSeries f, const value_type& x) { f += x; return f; } friend FormalPowerSeries operator+(const value_type& x, FormalPowerSeries f) { f += x; return f; } friend FormalPowerSeries operator-(FormalPowerSeries f, const value_type& x) { f -= x; return f; } friend FormalPowerSeries operator-(const value_type& x, FormalPowerSeries f) { f -= x; return -f; } friend FormalPowerSeries operator*(FormalPowerSeries f, const value_type& x) { f *= x; return f; } friend FormalPowerSeries operator*(const value_type& x, FormalPowerSeries f) { f *= x; return f; } friend FormalPowerSeries operator/(FormalPowerSeries f, const value_type& x) { f /= x; return f; } /* Binary Operations With Formal Power Series */ FormalPowerSeries& operator+=(const FormalPowerSeries& g) { const int n = g.size(); ensure(n); for (int i = 0; i < n; ++i) (*this)[i] += g[i]; return *this; } FormalPowerSeries& operator-=(const FormalPowerSeries& g) { const int n = g.size(); ensure(n); for (int i = 0; i < n; ++i) (*this)[i] -= g[i]; return *this; } FormalPowerSeries& operator*=(const FormalPowerSeries& g) { return *this = *this * g; } FormalPowerSeries& operator/=(const FormalPowerSeries& g) { return *this = *this / g; } FormalPowerSeries& operator%=(const FormalPowerSeries& g) { return *this = *this % g; } friend FormalPowerSeries operator+(FormalPowerSeries f, const FormalPowerSeries& g) { f += g; return f; } friend FormalPowerSeries operator-(FormalPowerSeries f, const FormalPowerSeries& g) { f -= g; return f; } friend FormalPowerSeries operator*(const FormalPowerSeries& f, const FormalPowerSeries& g) { const int siz_f = f.size(), siz_g = g.size(); if (siz_f < siz_g) return g * f; if (std::min(siz_f, siz_g) <= 60) return atcoder::convolution(f, g); const int deg = siz_f + siz_g - 2; int fpow2 = 1; while ((fpow2 << 1) <= deg) fpow2 <<= 1; if (const int dif = deg - fpow2 + 1; dif <= 10) { FormalPowerSeries h = atcoder::convolution(std::vector<mint>(f.begin(), f.end() - dif), g); h.resize(h.size() + dif); for (int i = siz_f - dif; i < siz_f; ++i) for (int j = 0; j < siz_g; ++j) { h[i + j] += f[i] * g[j]; } return h; } return atcoder::convolution(f, g); } friend FormalPowerSeries operator/(FormalPowerSeries f, FormalPowerSeries g) { if (f.size() < 60) return FPSNaive<mint>(f).div_mod(g).first; f.cut_trailing_zeros(), g.cut_trailing_zeros(); const int fd = f.deg(), gd = g.deg(); assert(gd >= 0); if (fd < gd) return {}; if (gd == 0) { f /= g[0]; return f; } std::reverse(f.begin(), f.end()), std::reverse(g.begin(), g.end()); const int qd = fd - gd; FormalPowerSeries q = f * g.inv(qd + 1); q.cut(qd + 1); std::reverse(q.begin(), q.end()); return q; } friend FormalPowerSeries operator%(const FormalPowerSeries& f, const FormalPowerSeries& g) { return f.div_mod(g).second; } std::pair<FormalPowerSeries, FormalPowerSeries> div_mod(const FormalPowerSeries& g) const { if (size() < 60) { auto [q, r] = FPSNaive<mint>(*this).div_mod(g); return { q, r }; } FormalPowerSeries q = *this / g, r = *this - g * q; r.cut_trailing_zeros(); return { q, r }; } /* Shift Operations */ FormalPowerSeries& operator<<=(const int shamt) { return this->insert(this->begin(), shamt, 0), * this; } FormalPowerSeries& operator>>=(const int shamt) { return this->erase(this->begin(), this->begin() + std::min(shamt, size())), * this; } friend FormalPowerSeries operator<<(FormalPowerSeries f, const int shamt) { f <<= shamt; return f; } friend FormalPowerSeries operator>>(FormalPowerSeries f, const int shamt) { f >>= shamt; return f; } /* Compare */ friend bool operator==(const FormalPowerSeries& f, const FormalPowerSeries& g) { const int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f[i] != g[i]) return false; for (int i = m; i < n; ++i) if (f[i] != 0) return false; return true; } friend bool operator!=(const FormalPowerSeries& f, const FormalPowerSeries& g) { return not (f == g); } /* Other Operations */ FormalPowerSeries& diff_inplace() { const int n = size(); for (int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; return (*this)[n - 1] = 0, *this; } FormalPowerSeries diff() const { FormalPowerSeries res = *this; res.diff_inplace(); return res; } FormalPowerSeries& intg_inplace() { const int n = size(); inv_mods<value_type> invs(n); this->resize(n + 1); for (int i = n; i > 0; --i) (*this)[i] = (*this)[i - 1] * invs[i]; return (*this)[0] = 0, *this; } FormalPowerSeries intg() const { FormalPowerSeries res = *this; res.intg_inplace(); return res; } FormalPowerSeries& inv_inplace(int n = -1) { return *this = inv(n); } // reference: https://opt-cp.com/fps-fast-algorithms/ FormalPowerSeries inv(int n = -1) const { if (n < 0) n = size(); if (n < 60) return FPSNaive<mint>(cut_copy(n)).inv(); if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return inv_sparse(std::move(*sp_f), n); FormalPowerSeries f_fft, g_fft; FormalPowerSeries g{ (*this)[0].inv() }; for (int k = 1; k < n; k *= 2) { f_fft = cut_copy(2 * k), g_fft = g.cut_copy(2 * k); atcoder::internal::butterfly(f_fft); atcoder::internal::butterfly(g_fft); update_inv(k, f_fft, g_fft, g); } g.resize(n); return g; } FormalPowerSeries& log_inplace(int n = -1) { return *this = log(n); } FormalPowerSeries log(int n = -1) const { assert(safe_get(0) == 1); if (n < 0) n = size(); if (n < 60) return FPSNaive<mint>(cut_copy(n)).log(); if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return log_sparse(std::move(*sp_f), n); FormalPowerSeries res = inv(n) * diff(); res.resize(n - 1); return res.intg(); } FormalPowerSeries& exp_inplace(int n = -1) { return *this = exp(n); } // https://arxiv.org/pdf/1301.5804.pdf FormalPowerSeries exp(int n = -1) const { assert(safe_get(0) == 0); if (n < 0) n = size(); if (n < 60) return FPSNaive<mint>(cut_copy(n)).exp(); if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return exp_sparse(std::move(*sp_f), n); // h = *this // f = exp(h) mod x ^ k // g = f^{-1} mod x ^ k FormalPowerSeries dh = diff(); FormalPowerSeries f{ 1 }, f_fft; FormalPowerSeries g{ 1 }, g_fft; for (int k = 1; k < n; k *= 2) { f_fft = f.cut_copy(2 * k), atcoder::internal::butterfly(f_fft); if (k > 1) update_inv(k / 2, f_fft, g_fft, g); FormalPowerSeries t = f.cut_copy(k); t.diff_inplace(); { FormalPowerSeries r = dh.cut_copy(k); r.back() = 0; atcoder::internal::butterfly(r); for (int i = 0; i < k; ++i) r[i] *= f_fft[i]; atcoder::internal::butterfly_inv(r); r /= -k; t += r; t <<= 1, t[0] = t[k], t.pop_back(); } t.resize(2 * k); atcoder::internal::butterfly(t); g_fft = g.cut_copy(2 * k); atcoder::internal::butterfly(g_fft); for (int i = 0; i < 2 * k; ++i) t[i] *= g_fft[i]; atcoder::internal::butterfly_inv(t); t.resize(k); t /= 2 * k; FormalPowerSeries v = cut_copy(2 * k) >>= k; t <<= k - 1; t.intg_inplace(); for (int i = 0; i < k; ++i) v[i] -= t[k + i]; v.resize(2 * k); atcoder::internal::butterfly(v); for (int i = 0; i < 2 * k; ++i) v[i] *= f_fft[i]; atcoder::internal::butterfly_inv(v); v.resize(k); v /= 2 * k; f.resize(2 * k); for (int i = 0; i < k; ++i) f[k + i] = v[i]; } f.cut(n); return f; } FormalPowerSeries& pow_inplace(long long k, int n = -1) { return *this = pow(k, n); } FormalPowerSeries pow(const long long k, int n = -1) const { if (n < 0) n = size(); if (n < 60) return FPSNaive<mint>(cut_copy(n)).pow(k); if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return pow_sparse(std::move(*sp_f), k, n); if (k == 0) { FormalPowerSeries f{ 1 }; f.resize(n); return f; } int tlz = 0; while (tlz < size() and (*this)[tlz] == 0) ++tlz; if (tlz == size() or tlz > (n - 1) / k) return FormalPowerSeries(n, 0); const int m = n - tlz * k; FormalPowerSeries f = *this >> tlz; value_type base = f[0]; return ((((f /= base).log(m) *= k).exp(m) *= base.pow(k)) <<= (tlz * k)); } std::optional<FormalPowerSeries> safe_sqrt(int n = -1) const { if (n < 0) n = size(); if (n < 60) return FPSNaive<mint>(cut_copy(n)).safe_sqrt(); if (auto sp_f = sparse_fps_format(15); sp_f.has_value()) return safe_sqrt_sparse(std::move(*sp_f), n); int tlz = 0; while (tlz < size() and (*this)[tlz] == 0) ++tlz; if (tlz == size()) return FormalPowerSeries(n, 0); if (tlz & 1) return std::nullopt; const int m = n - tlz / 2; FormalPowerSeries h(this->begin() + tlz, this->end()); auto q0 = ::safe_sqrt(h[0]); if (not q0.has_value()) return std::nullopt; FormalPowerSeries f{ *q0 }, f_fft, g{ q0->inv() }, g_fft; for (int k = 1; k < m; k *= 2) { f_fft = f.cut_copy(2 * k), atcoder::internal::butterfly(f_fft); if (k > 1) update_inv(k / 2, f_fft, g_fft, g); g_fft = g.cut_copy(2 * k); atcoder::internal::butterfly(g_fft); FormalPowerSeries h_fft = h.cut_copy(2 * k); atcoder::internal::butterfly(h_fft); for (int i = 0; i < 2 * k; ++i) h_fft[i] = (h_fft[i] - f_fft[i] * f_fft[i]) * g_fft[i]; atcoder::internal::butterfly_inv(h_fft); f.resize(2 * k); const value_type iz = value_type(4 * k).inv(); for (int i = 0; i < k; ++i) f[k + i] = h_fft[k + i] * iz; } f.resize(m), f <<= (tlz / 2); return f; } FormalPowerSeries& sqrt_inplace(int n = -1) { return *this = sqrt(n); } FormalPowerSeries sqrt(int n = -1) const { return *safe_sqrt(n); } value_type eval(value_type x) const { value_type y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + (*this)[i]; return y; } static FormalPowerSeries prod(const std::vector<FormalPowerSeries>& fs) { if (fs.empty()) return { 1 }; std::deque<FormalPowerSeries> dq(fs.begin(), fs.end()); std::sort(dq.begin(), dq.end(), [](auto& f, auto& g) { return f.size() < g.size(); }); while (dq.size() >= 2) { dq.push_back(dq[0] * dq[1]); dq.pop_front(); dq.pop_front(); } return dq.front(); } std::optional<std::vector<std::pair<int, value_type>>> sparse_fps_format(int max_size) const { std::vector<std::pair<int, value_type>> res; for (int i = 0; i <= deg() and int(res.size()) <= max_size; ++i) if (value_type v = (*this)[i]; v != 0) res.emplace_back(i, v); if (int(res.size()) > max_size) return std::nullopt; return res; } private: static void update_inv(const int k, FormalPowerSeries& f_fft, FormalPowerSeries& g_fft, FormalPowerSeries& g) { FormalPowerSeries fg(2 * k); for (int i = 0; i < 2 * k; ++i) fg[i] = f_fft[i] * g_fft[i]; atcoder::internal::butterfly_inv(fg); fg >>= k, fg.resize(2 * k); atcoder::internal::butterfly(fg); for (int i = 0; i < 2 * k; ++i) fg[i] *= g_fft[i]; atcoder::internal::butterfly_inv(fg); const value_type iz = value_type(2 * k).inv(), c = -iz * iz; g.resize(2 * k); for (int i = 0; i < k; ++i) g[k + i] = fg[i] * c; } static FormalPowerSeries div_fps_sparse(const FormalPowerSeries& f, const std::vector<std::pair<int, value_type>>& g, int n) { const int siz = g.size(); assert(siz and g[0].first == 0); const value_type inv_g0 = g[0].second.inv(); FormalPowerSeries h(n); for (int i = 0; i < n; ++i) { value_type v = f.safe_get(i); for (int idx = 1; idx < siz; ++idx) { const auto& [j, gj] = g[idx]; if (j > i) break; v -= gj * h[i - j]; } h[i] = v * inv_g0; } return h; } static FormalPowerSeries inv_sparse(const std::vector<std::pair<int, value_type>>& g, const int n) { return div_fps_sparse(FormalPowerSeries{ 1 }, g, n); } static FormalPowerSeries exp_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) { const int siz = f.size(); assert(not siz or f[0].first != 0); FormalPowerSeries g(n); g[0] = 1; inv_mods<value_type> invs(n); for (int i = 1; i < n; ++i) { value_type v = 0; for (const auto& [j, fj] : f) { if (j > i) break; v += j * fj * g[i - j]; } v *= invs[i]; g[i] = v; } return g; } static FormalPowerSeries log_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) { const int siz = f.size(); assert(siz and f[0].first == 0 and f[0].second == 1); FormalPowerSeries g(n); for (int idx = 1; idx < siz; ++idx) { const auto& [j, fj] = f[idx]; if (j >= n) break; g[j] = j * fj; } inv_mods<value_type> invs(n); for (int i = 1; i < n; ++i) { value_type v = g[i]; for (int idx = 1; idx < siz; ++idx) { const auto& [j, fj] = f[idx]; if (j > i) break; v -= fj * g[i - j] * (i - j); } v *= invs[i]; g[i] = v; } return g; } static FormalPowerSeries pow_sparse(const std::vector<std::pair<int, value_type>>& f, const long long k, const int n) { if (k == 0) { FormalPowerSeries res(n, 0); res[0] = 1; return res; } const int siz = f.size(); if (not siz) return FormalPowerSeries(n, 0); const int p = f[0].first; if (p > (n - 1) / k) return FormalPowerSeries(n, 0); const value_type inv_f0 = f[0].second.inv(); const int lz = p * k; FormalPowerSeries g(n); g[lz] = f[0].second.pow(k); inv_mods<value_type> invs(n); for (int i = 1; lz + i < n; ++i) { value_type v = 0; for (int idx = 1; idx < siz; ++idx) { auto [j, fj] = f[idx]; j -= p; if (j > i) break; v += fj * g[lz + i - j] * (value_type(k) * j - (i - j)); } v *= invs[i] * inv_f0; g[lz + i] = v; } return g; } static std::optional<FormalPowerSeries> safe_sqrt_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) { const int siz = f.size(); if (not siz) return FormalPowerSeries(n, 0); const int p = f[0].first; if (p % 2 == 1) return std::nullopt; if (p / 2 >= n) return FormalPowerSeries(n, 0); const value_type inv_f0 = f[0].second.inv(); const int lz = p / 2; FormalPowerSeries g(n); auto opt_g0 = ::safe_sqrt(f[0].second); if (not opt_g0.has_value()) return std::nullopt; g[lz] = *opt_g0; value_type k = mint(2).inv(); inv_mods<value_type> invs(n); for (int i = 1; lz + i < n; ++i) { value_type v = 0; for (int idx = 1; idx < siz; ++idx) { auto [j, fj] = f[idx]; j -= p; if (j > i) break; v += fj * g[lz + i - j] * (k * j - (i - j)); } v *= invs[i] * inv_f0; g[lz + i] = v; } return g; } static FormalPowerSeries sqrt_sparse(const std::vector<std::pair<int, value_type>>& f, const int n) { return *safe_sqrt(f, n); } }; } // namespace suisen template <typename mint> suisen::FormalPowerSeries<mint> sqrt(suisen::FormalPowerSeries<mint> a) { return a.sqrt(); } template <typename mint> suisen::FormalPowerSeries<mint> log(suisen::FormalPowerSeries<mint> a) { return a.log(); } template <typename mint> suisen::FormalPowerSeries<mint> exp(suisen::FormalPowerSeries<mint> a) { return a.exp(); } template <typename mint, typename T> suisen::FormalPowerSeries<mint> pow(suisen::FormalPowerSeries<mint> a, T b) { return a.pow(b); } template <typename mint> suisen::FormalPowerSeries<mint> inv(suisen::FormalPowerSeries<mint> a) { return a.inv(); } #include <utility> namespace suisen { template <typename FPSType> struct RationalFPS { using mint = typename FPSType::value_type; FPSType num, den; RationalFPS(const FPSType& num = { 0 }, const FPSType& den = { 1 }) : num(num), den(den) {} RationalFPS(const std::pair<FPSType, FPSType>& p) : num(p.first), den(p.second) {} FPSType to_fps(int n) const { int dlz = 0; while (dlz < den.size() and den[dlz] == 0) ++dlz; int nlz = 0; while (nlz < num.size() and num[nlz] == 0) ++nlz; assert(dlz != den.size()); if (nlz == num.size()) { return FPSType(n, mint(0)); } assert(dlz <= nlz); return ((num >> dlz) * (den >> dlz).inv(n)).cut(n); } RationalFPS<FPSType> operator+() const { return *this; } RationalFPS<FPSType> operator-() const { return { -num, den }; } friend RationalFPS<FPSType> operator+(const RationalFPS& lhs, const RationalFPS& rhs) { return { lhs.num * rhs.den + lhs.den * rhs.num, lhs.den * rhs.den }; } friend RationalFPS<FPSType> operator-(const RationalFPS& lhs, const RationalFPS& rhs) { return { lhs.num * rhs.den - lhs.den * rhs.num, lhs.den * rhs.den }; } friend RationalFPS<FPSType> operator*(const RationalFPS& lhs, const RationalFPS& rhs) { return { lhs.num * rhs.num, lhs.den * rhs.den }; } friend RationalFPS<FPSType> operator*(const RationalFPS& lhs, const mint& val) { return { lhs.num * val, lhs.den }; } friend RationalFPS<FPSType> operator/(const RationalFPS& lhs, const mint& val) { return { lhs.num, lhs.den * val }; } friend RationalFPS<FPSType> operator*(const mint& val, const RationalFPS& lhs) { return { lhs.num * val, lhs.den }; } friend RationalFPS<FPSType> operator/(const mint& val, const RationalFPS& lhs) { return { lhs.den * val, lhs.num }; } RationalFPS<FPSType>& operator+=(const RationalFPS& rhs) { return *this = *this + rhs; } RationalFPS<FPSType>& operator-=(const RationalFPS& rhs) { return *this = *this - rhs; } RationalFPS<FPSType>& operator*=(const RationalFPS& rhs) { return *this = *this * rhs; } RationalFPS<FPSType>& operator*=(const mint& val) { return num *= val, *this; } RationalFPS<FPSType>& operator/=(const mint& val) { return den *= val, *this; } RationalFPS<FPSType> inv() const { return { den, num }; } RationalFPS<FPSType>& inv_inplace() { return std::swap(num, den), * this; } FPSType normalize() { auto [q, r] = num.div_mod(den); num = std::move(r); return q; } static RationalFPS<FPSType> sum(const std::vector<RationalFPS<FPSType>>& fs) { auto comp = [](const RationalFPS<FPSType>& f, const RationalFPS<FPSType>& g) { return f.den.size() > g.den.size(); }; std::priority_queue<RationalFPS<FPSType>, std::vector<RationalFPS<FPSType>>, decltype(comp)> pq{ comp }; for (const auto& f : fs) pq.push(f); while (pq.size() > 1) { auto f = pq.top(); pq.pop(); auto g = pq.top(); pq.pop(); pq.emplace(f + g); } return pq.top(); } static RationalFPS<FPSType> prod(const std::vector<RationalFPS<FPSType>>& fs) { std::vector<FPSType> nums, dens; for (const auto &f : fs) nums.push_back(f.num), dens.push_back(f.den); return { FPSType::prod(nums), FPSType::prod(dens) }; } }; } // namespace suisen using namespace suisen; using FPS = FormalPowerSeries<mint>; using RFPS = RationalFPS<FPS>; int main() { int n, m; std::cin >> n >> m; std::vector<mint> a(n); for (auto &e : a) std::cin >> e; std::vector<RFPS> fs(n); for (int i = 0; i < n; ++i) { fs[i] = { FPS{1}, FPS{1, -a[i]} }; } FPS f = RFPS::sum(fs).to_fps(m + 1); for (int i = 1; i <= m; ++i) { std::cout << f[i] << " \n"[i == m]; } return 0; }