結果
問題 | No.1939 Numbered Colorful Balls |
ユーザー | 沙耶花 |
提出日時 | 2023-01-25 22:08:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 297 ms / 2,000 ms |
コード長 | 6,129 bytes |
コンパイル時間 | 5,316 ms |
コンパイル使用メモリ | 286,128 KB |
実行使用メモリ | 35,580 KB |
最終ジャッジ日時 | 2024-06-27 00:01:00 |
合計ジャッジ時間 | 11,757 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 291 ms
35,580 KB |
testcase_01 | AC | 60 ms
27,904 KB |
testcase_02 | AC | 293 ms
35,468 KB |
testcase_03 | AC | 293 ms
35,456 KB |
testcase_04 | AC | 60 ms
27,904 KB |
testcase_05 | AC | 293 ms
35,576 KB |
testcase_06 | AC | 293 ms
35,544 KB |
testcase_07 | AC | 113 ms
29,748 KB |
testcase_08 | AC | 85 ms
29,020 KB |
testcase_09 | AC | 295 ms
34,792 KB |
testcase_10 | AC | 63 ms
28,032 KB |
testcase_11 | AC | 173 ms
31,584 KB |
testcase_12 | AC | 72 ms
28,416 KB |
testcase_13 | AC | 63 ms
28,032 KB |
testcase_14 | AC | 113 ms
29,560 KB |
testcase_15 | AC | 86 ms
28,864 KB |
testcase_16 | AC | 174 ms
31,908 KB |
testcase_17 | AC | 172 ms
31,584 KB |
testcase_18 | AC | 115 ms
29,760 KB |
testcase_19 | AC | 290 ms
34,904 KB |
testcase_20 | AC | 114 ms
29,580 KB |
testcase_21 | AC | 295 ms
34,624 KB |
testcase_22 | AC | 73 ms
28,416 KB |
testcase_23 | AC | 172 ms
31,744 KB |
testcase_24 | AC | 295 ms
34,700 KB |
testcase_25 | AC | 173 ms
31,488 KB |
testcase_26 | AC | 297 ms
35,536 KB |
testcase_27 | AC | 61 ms
27,904 KB |
testcase_28 | AC | 61 ms
27,904 KB |
testcase_29 | AC | 173 ms
31,676 KB |
ソースコード
#include <stdio.h> #include <atcoder/all> #include <bits/stdc++.h> using namespace std; using namespace atcoder; using mint = modint998244353; #define rep(i,n) for (int i = 0; i < (n); ++i) #define Inf32 1000000001 #define Inf64 1000000000000000001 struct combi{ deque<mint> kaijou; deque<mint> kaijou_; combi(int n){ kaijou.push_back(1); for(int i=1;i<=n;i++){ kaijou.push_back(kaijou[i-1]*i); } mint b=kaijou[n].inv(); kaijou_.push_front(b); for(int i=1;i<=n;i++){ int k=n+1-i; kaijou_.push_front(kaijou_[0]*k); } } mint combination(int n,int r){ if(r>n)return 0; mint a = kaijou[n]*kaijou_[r]; a *= kaijou_[n-r]; return a; } mint junretsu(int a,int b){ mint x = kaijou_[a]*kaijou_[b]; x *= kaijou[a+b]; return x; } mint catalan(int n){ return combination(2*n,n)/(n+1); } }; combi C(3000000); int n,m; vector<int> L; // https://nyaannyaan.github.io/library/fps/formal-power-series.hpp struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const FPS &r) { auto ret = convolution(r,*this); return (*this) = FPS(ret.begin(),ret.end()); } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inv(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(ret.begin(), ret.end()); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS((*this).begin(), (*this).begin() + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } FPS inv(int deg = -1) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (*this).size(); FPS ret({mint(1) / (*this)[0]}); for (int i = 1; i < deg; i <<= 1) ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1); return ret.pre(deg); } FPS exp(int deg = -1) const{ assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = (int)this->size(); FPS ret({mint(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } }; using fps = FormalPowerSeries; int main(){ cin>>n>>m; L.resize(m); rep(i,m)cin>>L[i]; fps f(n+5); rep(i,m){ f[L[i]] = 1; } f[0] = 1; f = f.pow(n+1,n+1); mint ans = f[n]; ans /= n+1; cout<<ans.val()<<endl; return 0; }