結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | t98slider |
提出日時 | 2023-01-27 13:29:29 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 185 ms / 3,000 ms |
コード長 | 5,204 bytes |
コンパイル時間 | 2,149 ms |
コンパイル使用メモリ | 188,080 KB |
実行使用メモリ | 36,432 KB |
最終ジャッジ日時 | 2024-06-28 00:27:09 |
合計ジャッジ時間 | 10,169 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 149 ms
35,980 KB |
testcase_03 | AC | 120 ms
32,200 KB |
testcase_04 | AC | 185 ms
34,836 KB |
testcase_05 | AC | 124 ms
35,608 KB |
testcase_06 | AC | 154 ms
32,368 KB |
testcase_07 | AC | 146 ms
34,416 KB |
testcase_08 | AC | 119 ms
32,476 KB |
testcase_09 | AC | 133 ms
30,856 KB |
testcase_10 | AC | 116 ms
32,024 KB |
testcase_11 | AC | 145 ms
33,464 KB |
testcase_12 | AC | 147 ms
33,300 KB |
testcase_13 | AC | 133 ms
35,540 KB |
testcase_14 | AC | 159 ms
30,804 KB |
testcase_15 | AC | 125 ms
31,616 KB |
testcase_16 | AC | 168 ms
34,612 KB |
testcase_17 | AC | 150 ms
36,432 KB |
testcase_18 | AC | 138 ms
33,112 KB |
testcase_19 | AC | 134 ms
32,596 KB |
testcase_20 | AC | 161 ms
31,356 KB |
testcase_21 | AC | 161 ms
34,956 KB |
testcase_22 | AC | 180 ms
32,304 KB |
testcase_23 | AC | 139 ms
35,796 KB |
testcase_24 | AC | 169 ms
32,024 KB |
testcase_25 | AC | 163 ms
34,824 KB |
testcase_26 | AC | 149 ms
33,364 KB |
testcase_27 | AC | 138 ms
33,380 KB |
testcase_28 | AC | 123 ms
35,184 KB |
testcase_29 | AC | 184 ms
33,908 KB |
testcase_30 | AC | 147 ms
34,648 KB |
testcase_31 | AC | 164 ms
34,272 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 98 ms
29,572 KB |
testcase_34 | AC | 145 ms
36,272 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } std::vector<Cost> detail_slope(int s, int t){ std::vector<std::pair<Cap, Cost>> ori = slope(s, t); std::vector<Cost> ans(ori.back().first + 1); Cap x = 0, nx; Cost y = 0, ny; for(int i = 1; i < ori.size(); i++){ std::tie(nx, ny) = ori[i]; Cost d = (ny - y) / (nx - x); while(x != nx){ ++x, y+= d; ans[x] = y; } } return ans; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n, m, u, v, c, d; cin >> n >> m; mcf_graph<int, ll> g(n); for(int i = 0; i < m; i++){ cin >> u >> v >> c >> d; u--, v--; g.add_edge(u, v, 1, c); g.add_edge(u, v, 1, d); g.add_edge(v, u, 1, c); g.add_edge(v, u, 1, d); } cout << g.flow(0, n - 1, 2).second << '\n'; }