結果

問題 No.2207 pCr検査
ユーザー 👑 p-adicp-adic
提出日時 2023-02-03 22:24:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 300 ms / 3,000 ms
コード長 8,235 bytes
コンパイル時間 3,058 ms
コンパイル使用メモリ 217,860 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-02 20:27:32
合計ジャッジ時間 7,702 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 62 ms
6,940 KB
testcase_03 AC 48 ms
6,940 KB
testcase_04 AC 45 ms
6,944 KB
testcase_05 AC 86 ms
6,940 KB
testcase_06 AC 22 ms
6,944 KB
testcase_07 AC 32 ms
6,944 KB
testcase_08 AC 27 ms
6,940 KB
testcase_09 AC 66 ms
6,940 KB
testcase_10 AC 4 ms
6,940 KB
testcase_11 AC 60 ms
6,940 KB
testcase_12 AC 80 ms
6,940 KB
testcase_13 AC 50 ms
6,940 KB
testcase_14 AC 14 ms
6,944 KB
testcase_15 AC 68 ms
6,944 KB
testcase_16 AC 46 ms
6,944 KB
testcase_17 AC 62 ms
6,944 KB
testcase_18 AC 36 ms
6,944 KB
testcase_19 AC 32 ms
6,940 KB
testcase_20 AC 29 ms
6,940 KB
testcase_21 AC 98 ms
6,940 KB
testcase_22 AC 300 ms
6,944 KB
testcase_23 AC 300 ms
6,944 KB
testcase_24 AC 10 ms
6,944 KB
testcase_25 AC 42 ms
6,940 KB
testcase_26 AC 31 ms
6,940 KB
testcase_27 AC 50 ms
6,944 KB
testcase_28 AC 106 ms
6,940 KB
testcase_29 AC 105 ms
6,940 KB
testcase_30 AC 106 ms
6,940 KB
testcase_31 AC 105 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <bits/stdc++.h>
using namespace std;

using uint = unsigned int;
using ll = long long;

#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\


#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO;	\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\


#define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO )	\
  ll ANSWER[LENGTH];							\
  ll ANSWER_INV[LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_I ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
    }									\
    POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \
    ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV;				\
    FOREQINV( i , MAX_I - 1 , 0 ){					\
      ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO;		\
    }									\
  }									\
									\

// 通常の二分探索(単調関数-目的値が一意実数解を持つ場合にそれを超えない最大の整数を返す)
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MAXIMUM;							\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;				\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
    if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
      VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;				\
    } else {								\
      ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    }									\
    while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){			\
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\
									\


// 二進法の二分探索(単調関数-目的値が一意実数解を持つ場合にそれを超えない最大の整数を返す)
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MINIMUM;							\
  {									\
    ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1;			\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2;			\
    }									\
    VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2;			\
    ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){		\
      ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
	break;								\
      } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){	\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
      }									\
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2;			\
    }									\
    ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2;			\
  }									\
									\


template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }

template <typename INT>
void SetPrimeFactorisation( const INT& n , vector<INT>& P , vector<INT>& exponent )
{

  INT n_copy = n;
  INT p = 2;

  if( n_copy % p == 0 ){

    P.push_back( p );
    exponent.push_back( 1 );
    INT& exponent_back = exponent.back();
    n_copy /= p;
    
    while( n_copy % p == 0 ){

      exponent_back++;
      n_copy /= p;
      
    }

  }

  p++;

  while( p * p <= n_copy ){

    if( n_copy % p == 0 ){

      P.push_back( p );
      exponent.push_back( 1 );
      INT& exponent_back = exponent.back();
      n_copy /= p;
    
      while( n_copy % p == 0 ){

	exponent_back++;
	n_copy /= p;
      
      }

    }

    p += 2;

  }

  if( n_copy != 1 ){

    P.push_back( n_copy );
    exponent.push_back( 1 );
    
  }
  
  return;
  
}

int main()
{
  UNTIE;
  CIN( int , k );
  CEXPR( int , length , 2 );
  constexpr ll modulo[length] = { 998244353 , 1000000007 };
  ll r_prod[length] = { 1 , 1 };
  CEXPR( int , bound , 10000000 );
  FOR( i , 1 , k ){
    CIN_ASSERT( pi , 2 , bound );
    CIN_ASSERT( ei , 1 , bound );
    FOR( j , 0 , length ){
      int ei_copy = ei;
      ll power_pi = pi;
      const ll& modulo_j = modulo[j];
      while( ei_copy != 0 ){
	if( ( ei_copy & 1 ) == 1 ){
	  ( r_prod[j] *= power_pi ) %= modulo_j;
	}
	( power_pi *= power_pi ) %= modulo_j;
	ei_copy >>= 1;
      }
    }
  }
  CIN_ASSERT( p , 2 , bound );
  CIN_ASSERT( e , 1 , bound );
  if( e != 1 ){
    RETURN( "-1 -1" );
  }
  int p_half = p / 2;
  int u = p;
  int r = 1;
  ll u_prod[length] = { 1 , 1 };
  bool searching = true;
  while( searching && r < p_half ){
    --u;
    ++r;
    searching = false;
    FOR( j , 0 , length ){
      const ll& modulo_j = modulo[j];
      ll& u_prod_j = u_prod[j];
      ll& r_prod_j = r_prod[j];
      ( u_prod_j *= u ) %= modulo_j;
      ( r_prod_j *= r ) %= modulo_j;
      if( ! searching ){
	if( u_prod_j != r_prod_j ){
	  searching = true;
	}
      }
    }
  }
  if( ! searching ){
    cout << p << " " << r << "\n";
    QUIT;
  }
  RETURN( "-1 -1" );
}
0