結果

問題 No.2207 pCr検査
ユーザー tokusakurai
提出日時 2023-02-03 22:42:23
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,332 ms / 3,000 ms
コード長 12,296 bytes
コンパイル時間 2,078 ms
コンパイル使用メモリ 198,772 KB
最終ジャッジ日時 2025-02-10 09:40:29
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:450:18: warning: ‘M’ may be used uninitialized [-Wmaybe-uninitialized]
  450 |     rep2(i, 1, M / 2 + 1) {
      |                ~~^~~
main.cpp:5:46: note: in definition of macro ‘rep2’
    5 | #define rep2(i, l, r) for (int i = (l); i < (r); i++)
      |                                              ^
main.cpp:440:9: note: ‘M’ was declared here
  440 |     int M;
      |         ^

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename T>
struct Number_Theoretic_Transform {
static int max_base;
static T root;
static vector<T> r, ir;
Number_Theoretic_Transform() {}
static void init() {
if (!r.empty()) return;
int mod = T::get_mod();
int tmp = mod - 1;
root = 2;
while (root.pow(tmp >> 1) == 1) root++;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
r.resize(max_base), ir.resize(max_base);
for (int i = 0; i < max_base; i++) {
r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 2^(i+2)
ir[i] = r[i].inverse(); // ir[i] := 1/r[i]
}
}
static void ntt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = n; k >>= 1;) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = w * a[j];
a[i] = x + y, a[j] = x - y;
}
w *= r[__builtin_ctz(++t)];
}
}
}
static void intt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = 1; k < n; k <<= 1) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = a[j];
a[i] = x + y, a[j] = w * (x - y);
}
w *= ir[__builtin_ctz(++t)];
}
}
T inv = T(n).inverse();
for (auto &e : a) e *= inv;
}
static vector<T> convolve(vector<T> a, vector<T> b) {
if (a.empty() || b.empty()) return {};
int k = (int)a.size() + (int)b.size() - 1, n = 1;
while (n < k) n <<= 1;
a.resize(n), b.resize(n);
ntt(a), ntt(b);
for (int i = 0; i < n; i++) a[i] *= b[i];
intt(a), a.resize(k);
return a;
}
};
template <typename T>
int Number_Theoretic_Transform<T>::max_base = 0;
template <typename T>
T Number_Theoretic_Transform<T>::root = T();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::r = vector<T>();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();
using NTT = Number_Theoretic_Transform<mint>;
template <typename T>
struct Combination {
static vector<T> _fac, _ifac;
Combination() {}
static void init(int n) {
_fac.resize(n + 1), _ifac.resize(n + 1);
_fac[0] = 1;
for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i;
_ifac[n] = _fac[n].inverse();
for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i;
}
static T fac(int k) { return _fac[k]; }
static T ifac(int k) { return _ifac[k]; }
static T inv(int k) { return fac(k - 1) * ifac(k); }
static T P(int n, int k) {
if (k < 0 || n < k) return 0;
return fac(n) * ifac(n - k);
}
static T C(int n, int k) {
if (k < 0 || n < k) return 0;
return fac(n) * ifac(n - k) * ifac(k);
}
// k n
static T H(int n, int k) {
if (n < 0 || k < 0) return 0;
return k == 0 ? 1 : C(n + k - 1, k);
}
// n k 1
static T second_stirling_number(int n, int k) {
T ret = 0;
for (int i = 0; i <= k; i++) {
T tmp = C(k, i) * T(i).pow(n);
ret += ((k - i) & 1) ? -tmp : tmp;
}
return ret * ifac(k);
}
// n k
static T bell_number(int n, int k) {
if (n == 0) return 1;
k = min(k, n);
vector<T> pref(k + 1);
pref[0] = 1;
for (int i = 1; i <= k; i++) {
if (i & 1) {
pref[i] = pref[i - 1] - ifac(i);
} else {
pref[i] = pref[i - 1] + ifac(i);
}
}
T ret = 0;
for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i];
return ret;
}
};
template <typename T>
vector<T> Combination<T>::_fac = vector<T>();
template <typename T>
vector<T> Combination<T>::_ifac = vector<T>();
using comb = Combination<mint>;
template <typename T>
vector<T> divisors(const T &n) {
vector<T> ret;
for (T i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return ret;
}
template <typename T>
vector<pair<T, int>> prime_factor(T n) {
vector<pair<T, int>> ret;
for (T i = 2; i * i <= n; i++) {
int cnt = 0;
while (n % i == 0) cnt++, n /= i;
if (cnt > 0) ret.emplace_back(i, cnt);
}
if (n > 1) ret.emplace_back(n, 1);
return ret;
}
template <typename T>
bool is_prime(const T &n) {
if (n == 1) return false;
for (T i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
// 1,2,...,n k
template <typename T>
T coprime(T n, T k) {
vector<pair<T, int>> ps = prime_factor(k);
int m = ps.size();
T ret = 0;
for (int i = 0; i < (1 << m); i++) {
T prd = 1;
for (int j = 0; j < m; j++) {
if ((i >> j) & 1) prd *= ps[j].first;
}
ret += (__builtin_parity(i) ? -1 : 1) * (n / prd);
}
return ret;
}
vector<bool> Eratosthenes(const int &n) {
vector<bool> ret(n + 1, true);
if (n >= 0) ret[0] = false;
if (n >= 1) ret[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!ret[i]) continue;
for (int j = i + i; j <= n; j += i) ret[j] = false;
}
return ret;
}
vector<int> Eratosthenes2(const int &n) {
vector<int> ret(n + 1);
iota(begin(ret), end(ret), 0);
if (n >= 0) ret[0] = -1;
if (n >= 1) ret[1] = -1;
for (int i = 2; i * i <= n; i++) {
if (ret[i] < i) continue;
for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i);
}
return ret;
}
int main() {
int MAX = 10000000;
vector<int> ps = Eratosthenes2(MAX);
int N;
cin >> N;
vector<int> cnt(MAX + 1, 0);
int M;
rep(i, N) {
int p, e;
cin >> p >> e;
cnt[p] = e;
M = p;
}
int ng = N;
rep2(i, 1, M / 2 + 1) {
{
int x = M + 1 - i;
while (x > 1) {
int y = ps[x];
if (cnt[y] != 0) ng--;
cnt[y]--;
if (cnt[y] != 0) ng++;
x /= y;
}
}
{
int x = i;
while (x > 1) {
int y = ps[x];
if (cnt[y] != 0) ng--;
cnt[y]++;
if (cnt[y] != 0) ng++;
x /= y;
}
}
if (ng == 0) {
cout << M MM i << '\n';
return 0;
}
}
cout << "-1 -1\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0