結果
問題 | No.2203 POWER!!!!! |
ユーザー | OnjoujiToki |
提出日時 | 2023-02-03 23:18:25 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 14 ms / 2,000 ms |
コード長 | 3,780 bytes |
コンパイル時間 | 1,370 ms |
コンパイル使用メモリ | 133,064 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-02 21:24:26 |
合計ジャッジ時間 | 2,265 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <cstdint> #include <cstring> #include <ctime> #include <deque> #include <iomanip> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <unordered_map> #include <unordered_set> template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; long long mod_pow(long long x, int n, int p) { long long ret = 1; while (n) { /* ∧,,,∧ ( ̳• · • ̳) / づ♡ I love you */ if (n & 1) (ret *= x) %= p; (x *= x) %= p; n >>= 1; } return ret; } // using mint = ModInt<1000000007>; using mint = ModInt<998244353>; // m, n , sum std::pair<std::vector<long long>, std::vector<int>> get_prime_factor_with_kinds( long long n) { std::vector<long long> prime_factors; std::vector<int> cnt; // number of i_th factor for (long long i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } void solve() { int n; std::cin >> n; std::vector<int> cnt(9, 0); std::vector<int> a(n); for (int &x : a) { std::cin >> x; cnt[x] += 1; } long long ans = 0; std::vector<std::vector<int>> pre(9, std::vector<int>(9, 0)); for (int i = 1; i <= 8; i++) { for (int j = 1; j <= 8; j++) { pre[i][j] = pow(i, j); } } for (int i = 1; i <= 8; i++) { for (int j = 1; j <= 8; j++) { ans += 1LL * cnt[i] * cnt[j] * pre[i][j]; } } std::cout << ans << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; // std::cout << std::boolalpha; // std::cin >> t; while (t--) solve(); return 0; }