結果

問題 No.2206 Popcount Sum 2
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-02-03 23:38:24
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 669 ms / 4,000 ms
コード長 21,500 bytes
コンパイル時間 3,248 ms
コンパイル使用メモリ 271,676 KB
実行使用メモリ 15,416 KB
最終ジャッジ日時 2024-07-02 21:40:49
合計ジャッジ時間 11,928 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 9 ms
6,808 KB
testcase_01 AC 10 ms
6,892 KB
testcase_02 AC 58 ms
10,552 KB
testcase_03 AC 58 ms
10,644 KB
testcase_04 AC 58 ms
10,640 KB
testcase_05 AC 669 ms
15,416 KB
testcase_06 AC 664 ms
15,160 KB
testcase_07 AC 662 ms
15,416 KB
testcase_08 AC 655 ms
15,164 KB
testcase_09 AC 655 ms
15,288 KB
testcase_10 AC 390 ms
15,288 KB
testcase_11 AC 389 ms
15,416 KB
testcase_12 AC 391 ms
15,140 KB
testcase_13 AC 337 ms
15,288 KB
testcase_14 AC 335 ms
15,284 KB
testcase_15 AC 336 ms
15,288 KB
testcase_16 AC 184 ms
15,160 KB
testcase_17 AC 184 ms
15,292 KB
testcase_18 AC 185 ms
15,164 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2023-02-03 23:38:17
 */

#define NDEBUG
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N,F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug

#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//


using namespace std;

namespace fastio {
static constexpr int SZ = 1 << 17;
char inbuf[SZ], outbuf[SZ];
int in_left = 0, in_right = 0, out_right = 0;

struct Pre {
  char num[40000];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i * 4 + j] = n % 10 + '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  int len = in_right - in_left;
  memmove(inbuf, inbuf + in_left, len);
  in_right = len + fread(inbuf + len, 1, SZ - len, stdin);
  in_left = 0;
}

inline void flush() {
  fwrite(outbuf, 1, out_right, stdout);
  out_right = 0;
}

inline void skip_space() {
  if (in_left + 32 > in_right) load();
  while (inbuf[in_left] <= ' ') in_left++;
}

inline void rd(char& c) {
  if (in_left + 32 > in_right) load();
  c = inbuf[in_left++];
}
template <typename T>
inline void rd(T& x) {
  if (in_left + 32 > in_right) load();
  char c;
  do c = inbuf[in_left++];
  while (c < '-');
  [[maybe_unused]] bool minus = false;
  if constexpr (is_signed<T>::value == true) {
    if (c == '-') minus = true, c = inbuf[in_left++];
  }
  x = 0;
  while (c >= '0') {
    x = x * 10 + (c & 15);
    c = inbuf[in_left++];
  }
  if constexpr (is_signed<T>::value == true) {
    if (minus) x = -x;
  }
}
inline void rd() {}
template <typename Head, typename... Tail>
inline void rd(Head& head, Tail&... tail) {
  rd(head);
  rd(tail...);
}

inline void wt(char c) {
  if (out_right > SZ - 32) flush();
  outbuf[out_right++] = c;
}
inline void wt(bool b) {
  if (out_right > SZ - 32) flush();
  outbuf[out_right++] = b ? '1' : '0';
}
inline void wt(const string &s) {
  if (out_right + s.size() > SZ - 32) flush();
  memcpy(outbuf + out_right, s.data(), sizeof(char) * s.size());
  out_right += s.size();
}
template <typename T>
inline void wt(T x) {
  if (out_right > SZ - 32) flush();
  if (!x) {
    outbuf[out_right++] = '0';
    return;
  }
  if constexpr (is_signed<T>::value == true) {
    if (x < 0) outbuf[out_right++] = '-', x = -x;
  }
  int i = 12;
  char buf[16];
  while (x >= 10000) {
    memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
    x /= 10000;
    i -= 4;
  }
  if (x < 100) {
    if (x < 10) {
      outbuf[out_right] = '0' + x;
      ++out_right;
    } else {
      uint32_t q = (uint32_t(x) * 205) >> 11;
      uint32_t r = uint32_t(x) - q * 10;
      outbuf[out_right] = '0' + q;
      outbuf[out_right + 1] = '0' + r;
      out_right += 2;
    }
  } else {
    if (x < 1000) {
      memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3);
      out_right += 3;
    } else {
      memcpy(outbuf + out_right, pre.num + (x << 2), 4);
      out_right += 4;
    }
  }
  memcpy(outbuf + out_right, buf + i + 4, 12 - i);
  out_right += 12 - i;
}
inline void wt() {}
template <typename Head, typename... Tail>
inline void wt(Head&& head, Tail&&... tail) {
  wt(head);
  wt(forward<Tail>(tail)...);
}
template <typename... Args>
inline void wtn(Args&&... x) {
  wt(forward<Args>(x)...);
  wt('\n');
}

struct Dummy {
  Dummy() { atexit(flush); }
} dummy;

}  // namespace fastio
using fastio::rd;
using fastio::skip_space;
using fastio::wt;
using fastio::wtn;

//

using namespace std;

struct Fast_Mo {
  int N, Q, width;
  vector<int> L, R, order;
  bool is_build;

  Fast_Mo(int _n, int _q) : N(_n), Q(_q), order(Q), is_build(false) {
    width = max<int>(1, 1.0 * N / max<double>(1.0, sqrt(Q / 2.0)));
    iota(begin(order), end(order), 0);
  }
  // [l, r)
  void insert(int l, int r) {
    assert(0 <= l and l <= r and r <= N);
    L.push_back(l), R.push_back(r);
  }

  void build() { sort(), climb(), is_build = true; }

  template <typename AL, typename AR, typename DL, typename DR, typename REM>
  void run(const AL &add_left, const AR &add_right, const DL &delete_left,
           const DR &delete_right, const REM &rem) {
    if (!is_build) build();
    int nl = 0, nr = 0;
    for (auto idx : order) {
      while (nl > L[idx]) add_left(--nl);
      while (nr < R[idx]) add_right(nr++);
      while (nl < L[idx]) delete_left(nl++);
      while (nr > R[idx]) delete_right(--nr);
      rem(idx);
    }
  }

 private:
  void sort() {
    assert((int)order.size() == Q);
    vector<int> cnt(N + 1), buf(Q);
    for (int i = 0; i < Q; i++) cnt[R[i]]++;
    for (int i = 1; i < (int)cnt.size(); i++) cnt[i] += cnt[i - 1];
    for (int i = 0; i < Q; i++) buf[--cnt[R[i]]] = i;
    vector<int> b(Q);
    for (int i = 0; i < Q; i++) b[i] = L[i] / width;
    cnt.resize(N / width + 1);
    fill(begin(cnt), end(cnt), 0);
    for (int i = 0; i < Q; i++) cnt[b[i]]++;
    for (int i = 1; i < (int)cnt.size(); i++) cnt[i] += cnt[i - 1];
    for (int i = 0; i < Q; i++) order[--cnt[b[buf[i]]]] = buf[i];
    for (int i = 0, j = 0; i < Q; i = j) {
      int bi = b[order[i]];
      j = i + 1;
      while (j != Q and bi == b[order[j]]) j++;
      if (!(bi & 1)) reverse(begin(order) + i, begin(order) + j);
    }
  }

  int dist(int i, int j) { return abs(L[i] - L[j]) + abs(R[i] - R[j]); }
  
  void climb(int iter = 3, int interval = 5) {
    vector<int> d(Q - 1);
    for (int i = 0; i < Q - 1; i++) d[i] = dist(order[i], order[i + 1]);
    while (iter--) {
      for (int i = 1; i < Q; i++) {
        int pre1 = d[i - 1];
        int js = i + 1, je = min<int>(i + interval, Q - 1);
        for (int j = je - 1; j >= js; j--) {
          int pre2 = d[j];
          int now1 = dist(order[i - 1], order[j]);
          int now2 = dist(order[i], order[j + 1]);
          if (now1 + now2 < pre1 + pre2) {
            reverse(begin(order) + i, begin(order) + j + 1);
            reverse(begin(d) + i, begin(d) + j);
            d[i - 1] = pre1 = now1;
            d[j] = now2;
          }
        }
      }
    }
  }
};


struct Mo {
  int width;
  vector<int> left, right, order;

  Mo(int N, int Q) : order(Q) {
    width = max<int>(1, 1.0 * N / max<double>(1.0, sqrt(Q * 2.0 / 3.0)));
    iota(begin(order), end(order), 0);
  }

  void insert(int l, int r) { /* [l, r) */
    left.emplace_back(l);
    right.emplace_back(r);
  }

  template <typename AL, typename AR, typename DL, typename DR, typename REM>
  void run(const AL &add_left, const AR &add_right, const DL &delete_left,
           const DR &delete_right, const REM &rem) {
    assert(left.size() == order.size());
    sort(begin(order), end(order), [&](int a, int b) {
      int ablock = left[a] / width, bblock = left[b] / width;
      if (ablock != bblock) return ablock < bblock;
      if (ablock & 1) return right[a] < right[b];
      return right[a] > right[b];
    });
    int nl = 0, nr = 0;
    for (auto idx : order) {
      while (nl > left[idx]) add_left(--nl);
      while (nr < right[idx]) add_right(nr++);
      while (nl < left[idx]) delete_left(nl++);
      while (nr > right[idx]) delete_right(--nr);
      rem(idx);
    }
  }
};

/**
 * @brief Mo's algorithm
 * @docs docs/misc/mo.md
 */

//



template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};

template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    while (MAX >= (int)f.size()) extend();
  }

  void extend() {
    int n = f.size();
    int m = n * 2;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C{200003};

using namespace Nyaan;

void q() {
  int Q;
  rd(Q);
  V<pi> qs(Q);
  rep(i, Q) {
    rd(qs[i].fi, qs[i].se);
    --qs[i].fi, --qs[i].se;
  }
  int N = 2;
  for (auto& p : qs) N = max(N, p.first);
  Binomial<mint> b(N + 1);
  Mo mo(N, Q);
  for (auto& p : qs) {
    assert(p.second <= p.first);
    assert(p.first <= N);
    mo.insert(p.second, p.first);
  }
  vector<mint> ans(Q);
  mint cur = 1, inv2 = mint{2}.inverse();
  int n = 0, m = 0;
  auto al = [&](int) { cur -= b.C(n, m--); };
  auto ar = [&](int) { cur += cur - b.C(n++, m); };
  auto el = [&](int) { cur += b.C(n, ++m); };
  auto er = [&](int) { cur = (cur + b.C(--n, m)) * inv2; };
  auto q = [&](int i) { ans[i] = cur; };
  mo.run(al, ar, el, er, q);
  vm pw(N + 2);
  pw[0] = 1;
  rep1(i, N + 1) pw[i] = pw[i - 1] + pw[i - 1];
  rep(i, Q) wtn((ans[i] * (pw[qs[i].fi + 1] - 1)).get());
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0