結果
問題 | No.2206 Popcount Sum 2 |
ユーザー | NyaanNyaan |
提出日時 | 2023-02-03 23:38:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 513 ms / 4,000 ms |
コード長 | 21,505 bytes |
コンパイル時間 | 3,399 ms |
コンパイル使用メモリ | 272,596 KB |
実行使用メモリ | 16,828 KB |
最終ジャッジ日時 | 2024-07-02 21:41:09 |
合計ジャッジ時間 | 9,741 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 9 ms
6,892 KB |
testcase_01 | AC | 9 ms
6,944 KB |
testcase_02 | AC | 47 ms
10,640 KB |
testcase_03 | AC | 47 ms
10,636 KB |
testcase_04 | AC | 48 ms
10,512 KB |
testcase_05 | AC | 513 ms
16,692 KB |
testcase_06 | AC | 508 ms
16,696 KB |
testcase_07 | AC | 503 ms
16,692 KB |
testcase_08 | AC | 500 ms
16,828 KB |
testcase_09 | AC | 499 ms
16,696 KB |
testcase_10 | AC | 224 ms
16,564 KB |
testcase_11 | AC | 229 ms
16,668 KB |
testcase_12 | AC | 231 ms
16,568 KB |
testcase_13 | AC | 144 ms
16,568 KB |
testcase_14 | AC | 144 ms
16,568 KB |
testcase_15 | AC | 146 ms
16,568 KB |
testcase_16 | AC | 106 ms
16,696 KB |
testcase_17 | AC | 103 ms
16,604 KB |
testcase_18 | AC | 102 ms
16,644 KB |
ソースコード
/** * date : 2023-02-03 23:38:34 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N,F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(vector<T> &v) { return next_permutation(begin(v), end(v)); } template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &...u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // using namespace std; namespace fastio { static constexpr int SZ = 1 << 17; char inbuf[SZ], outbuf[SZ]; int in_left = 0, in_right = 0, out_right = 0; struct Pre { char num[40000]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i * 4 + j] = n % 10 + '0'; n /= 10; } } } } constexpr pre; inline void load() { int len = in_right - in_left; memmove(inbuf, inbuf + in_left, len); in_right = len + fread(inbuf + len, 1, SZ - len, stdin); in_left = 0; } inline void flush() { fwrite(outbuf, 1, out_right, stdout); out_right = 0; } inline void skip_space() { if (in_left + 32 > in_right) load(); while (inbuf[in_left] <= ' ') in_left++; } inline void rd(char& c) { if (in_left + 32 > in_right) load(); c = inbuf[in_left++]; } template <typename T> inline void rd(T& x) { if (in_left + 32 > in_right) load(); char c; do c = inbuf[in_left++]; while (c < '-'); [[maybe_unused]] bool minus = false; if constexpr (is_signed<T>::value == true) { if (c == '-') minus = true, c = inbuf[in_left++]; } x = 0; while (c >= '0') { x = x * 10 + (c & 15); c = inbuf[in_left++]; } if constexpr (is_signed<T>::value == true) { if (minus) x = -x; } } inline void rd() {} template <typename Head, typename... Tail> inline void rd(Head& head, Tail&... tail) { rd(head); rd(tail...); } inline void wt(char c) { if (out_right > SZ - 32) flush(); outbuf[out_right++] = c; } inline void wt(bool b) { if (out_right > SZ - 32) flush(); outbuf[out_right++] = b ? '1' : '0'; } inline void wt(const string &s) { if (out_right + s.size() > SZ - 32) flush(); memcpy(outbuf + out_right, s.data(), sizeof(char) * s.size()); out_right += s.size(); } template <typename T> inline void wt(T x) { if (out_right > SZ - 32) flush(); if (!x) { outbuf[out_right++] = '0'; return; } if constexpr (is_signed<T>::value == true) { if (x < 0) outbuf[out_right++] = '-', x = -x; } int i = 12; char buf[16]; while (x >= 10000) { memcpy(buf + i, pre.num + (x % 10000) * 4, 4); x /= 10000; i -= 4; } if (x < 100) { if (x < 10) { outbuf[out_right] = '0' + x; ++out_right; } else { uint32_t q = (uint32_t(x) * 205) >> 11; uint32_t r = uint32_t(x) - q * 10; outbuf[out_right] = '0' + q; outbuf[out_right + 1] = '0' + r; out_right += 2; } } else { if (x < 1000) { memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3); out_right += 3; } else { memcpy(outbuf + out_right, pre.num + (x << 2), 4); out_right += 4; } } memcpy(outbuf + out_right, buf + i + 4, 12 - i); out_right += 12 - i; } inline void wt() {} template <typename Head, typename... Tail> inline void wt(Head&& head, Tail&&... tail) { wt(head); wt(forward<Tail>(tail)...); } template <typename... Args> inline void wtn(Args&&... x) { wt(forward<Args>(x)...); wt('\n'); } struct Dummy { Dummy() { atexit(flush); } } dummy; } // namespace fastio using fastio::rd; using fastio::skip_space; using fastio::wt; using fastio::wtn; // using namespace std; struct Fast_Mo { int N, Q, width; vector<int> L, R, order; bool is_build; Fast_Mo(int _n, int _q) : N(_n), Q(_q), order(Q), is_build(false) { width = max<int>(1, 1.0 * N / max<double>(1.0, sqrt(Q / 2.0))); iota(begin(order), end(order), 0); } // [l, r) void insert(int l, int r) { assert(0 <= l and l <= r and r <= N); L.push_back(l), R.push_back(r); } void build() { sort(), climb(), is_build = true; } template <typename AL, typename AR, typename DL, typename DR, typename REM> void run(const AL &add_left, const AR &add_right, const DL &delete_left, const DR &delete_right, const REM &rem) { if (!is_build) build(); int nl = 0, nr = 0; for (auto idx : order) { while (nl > L[idx]) add_left(--nl); while (nr < R[idx]) add_right(nr++); while (nl < L[idx]) delete_left(nl++); while (nr > R[idx]) delete_right(--nr); rem(idx); } } private: void sort() { assert((int)order.size() == Q); vector<int> cnt(N + 1), buf(Q); for (int i = 0; i < Q; i++) cnt[R[i]]++; for (int i = 1; i < (int)cnt.size(); i++) cnt[i] += cnt[i - 1]; for (int i = 0; i < Q; i++) buf[--cnt[R[i]]] = i; vector<int> b(Q); for (int i = 0; i < Q; i++) b[i] = L[i] / width; cnt.resize(N / width + 1); fill(begin(cnt), end(cnt), 0); for (int i = 0; i < Q; i++) cnt[b[i]]++; for (int i = 1; i < (int)cnt.size(); i++) cnt[i] += cnt[i - 1]; for (int i = 0; i < Q; i++) order[--cnt[b[buf[i]]]] = buf[i]; for (int i = 0, j = 0; i < Q; i = j) { int bi = b[order[i]]; j = i + 1; while (j != Q and bi == b[order[j]]) j++; if (!(bi & 1)) reverse(begin(order) + i, begin(order) + j); } } int dist(int i, int j) { return abs(L[i] - L[j]) + abs(R[i] - R[j]); } void climb(int iter = 3, int interval = 5) { vector<int> d(Q - 1); for (int i = 0; i < Q - 1; i++) d[i] = dist(order[i], order[i + 1]); while (iter--) { for (int i = 1; i < Q; i++) { int pre1 = d[i - 1]; int js = i + 1, je = min<int>(i + interval, Q - 1); for (int j = je - 1; j >= js; j--) { int pre2 = d[j]; int now1 = dist(order[i - 1], order[j]); int now2 = dist(order[i], order[j + 1]); if (now1 + now2 < pre1 + pre2) { reverse(begin(order) + i, begin(order) + j + 1); reverse(begin(d) + i, begin(d) + j); d[i - 1] = pre1 = now1; d[j] = now2; } } } } } }; struct Mo { int width; vector<int> left, right, order; Mo(int N, int Q) : order(Q) { width = max<int>(1, 1.0 * N / max<double>(1.0, sqrt(Q * 2.0 / 3.0))); iota(begin(order), end(order), 0); } void insert(int l, int r) { /* [l, r) */ left.emplace_back(l); right.emplace_back(r); } template <typename AL, typename AR, typename DL, typename DR, typename REM> void run(const AL &add_left, const AR &add_right, const DL &delete_left, const DR &delete_right, const REM &rem) { assert(left.size() == order.size()); sort(begin(order), end(order), [&](int a, int b) { int ablock = left[a] / width, bblock = left[b] / width; if (ablock != bblock) return ablock < bblock; if (ablock & 1) return right[a] < right[b]; return right[a] > right[b]; }); int nl = 0, nr = 0; for (auto idx : order) { while (nl > left[idx]) add_left(--nl); while (nr < right[idx]) add_right(nr++); while (nl < left[idx]) delete_left(nl++); while (nr > right[idx]) delete_right(--nr); rem(idx); } } }; /** * @brief Mo's algorithm * @docs docs/misc/mo.md */ // template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial<mint>()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); while (MAX >= (int)f.size()) extend(); } void extend() { int n = f.size(); int m = n * 2; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C{200003}; using namespace Nyaan; void q() { int Q; rd(Q); V<pi> qs(Q); rep(i, Q) { rd(qs[i].fi, qs[i].se); --qs[i].fi, --qs[i].se; } int N = 2; for (auto& p : qs) N = max(N, p.first); Binomial<mint> b(N + 1); Fast_Mo mo(N, Q); for (auto& p : qs) { assert(p.second <= p.first); assert(p.first <= N); mo.insert(p.second, p.first); } vector<mint> ans(Q); mint cur = 1, inv2 = mint{2}.inverse(); int n = 0, m = 0; auto al = [&](int) { cur -= b.C(n, m--); }; auto ar = [&](int) { cur += cur - b.C(n++, m); }; auto el = [&](int) { cur += b.C(n, ++m); }; auto er = [&](int) { cur = (cur + b.C(--n, m)) * inv2; }; auto q = [&](int i) { ans[i] = cur; }; mo.run(al, ar, el, er, q); vm pw(N + 2); pw[0] = 1; rep1(i, N + 1) pw[i] = pw[i - 1] + pw[i - 1]; rep(i, Q) wtn((ans[i] * (pw[qs[i].fi + 1] - 1)).get()); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }