結果
問題 | No.2207 pCr検査 |
ユーザー |
![]() |
提出日時 | 2023-02-04 00:37:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,181 ms / 3,000 ms |
コード長 | 17,749 bytes |
コンパイル時間 | 2,160 ms |
コンパイル使用メモリ | 198,716 KB |
最終ジャッジ日時 | 2025-02-10 10:22:34 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 30 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#define rep(i, n) for (int i = 0; i < (int)(n); i++)#define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--)#define all(x) (x).begin(), (x).end()#define sz(x) int(x.size())using namespace std;using ll = long long;const int INF = 1e9;const ll LINF = 1e18;template <class T>void get_unique(vector<T>& x) {x.erase(unique(x.begin(), x.end()), x.end());}template <class T>bool chmax(T& a, const T& b) {if (a < b) {a = b;return 1;}return 0;}template <class T>bool chmin(T& a, const T& b) {if (b < a) {a = b;return 1;}return 0;}template <class T>vector<T> make_vec(size_t a) {return vector<T>(a);}template <class T, class... Ts>auto make_vec(size_t a, Ts... ts) {return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));}template <typename T>istream& operator>>(istream& is, vector<T>& v) {for (int i = 0; i < int(v.size()); i++) {is >> v[i];}return is;}template <typename T>ostream& operator<<(ostream& os, const vector<T>& v) {for (int i = 0; i < int(v.size()); i++) {os << v[i];if (i < sz(v) - 1) os << ' ';}return os;}#line 2 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"#line 5 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"#ifdef _MSC_VER#include <intrin.h>#endifnamespace internal {// @param n `0 <= n`// @return minimum non-negative `x` s.t. `n <= 2**x`int ceil_pow2(int n) {int x = 0;while ((1U << x) < (unsigned int)(n)) x++;return x;}// @param n `1 <= n`// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`int bsf(unsigned int n) {#ifdef _MSC_VERunsigned long index;_BitScanForward(&index, n);return index;#elsereturn __builtin_ctz(n);#endif}} // namespace internal#line 35 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"namespace internal {// @param m `1 <= m`// @return x mod mconstexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}// Fast moduler by barrett reduction// Reference: https://en.wikipedia.org/wiki/Barrett_reduction// NOTE: reconsider after Ice Lakestruct barrett {unsigned int _m;unsigned long long im;// @param m `1 <= m`barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}// @return munsigned int umod() const {return _m;}// @param a `0 <= a < m`// @param b `0 <= b < m`// @return `a * b % m`unsigned int mul(unsigned int a, unsigned int b) const {// [1] m = 1// a = b = im = 0, so okay// [2] m >= 2// im = ceil(2^64 / m)// -> im * m = 2^64 + r (0 <= r < m)// let z = a*b = c*m + d (0 <= c, d < m)// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1)// < 2^64 * 2// ((ab * im) >> 64) == c or c + 1unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned int v = (unsigned int)(z - x * _m);if (_m <= v) v += _m;return v;}};// @param n `0 <= n`// @param m `1 <= m`// @return `(x ** n) % m`constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}// Reference:// M. Forisek and J. Jancina,// Fast Primality Testing for Integers That Fit into a Machine Word// @param n `0 <= n`constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;for (long long a : {2, 7, 61}) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n>constexpr bool is_prime = is_prime_constexpr(n);// @param b `1 <= b`// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// Compile time primitive root// @param m must be prime// @return primitive root (and minimum in now)constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m>constexpr int primitive_root = primitive_root_constexpr(m);} // namespace internal#line 213 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"#include <type_traits>namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type, std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,unsigned __int128>;template <class T>using is_integral =typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using is_signed_int =typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T>using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type, std::false_type>::type;template <class T>using to_unsigned =typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T>using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal#line 299 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"#ifdef _MSC_VER#include <intrin.h>#endifnamespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T>using is_modint = std::is_base_of<modint_base, T>;template <class T>using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() {return m;}static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}static_modint(bool v) {_v = ((unsigned int)(v) % umod());}unsigned int val() const {return _v;}mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) {return *this = *this * rhs.inv();}mint operator+() const {return *this;}mint operator-() const {return mint() - *this;}mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() {return m;}static constexpr bool prime = internal::is_prime<m>;};template <int id>struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() {return (int)(bt.umod());}static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0) x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}dynamic_modint(bool v) {_v = ((unsigned int)(v) % mod());}unsigned int val() const {return _v;}mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v += mod() - rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator*=(const mint& rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint& operator/=(const mint& rhs) {return *this = *this * rhs.inv();}mint operator+() const {return *this;}mint operator-() const {return mint() - *this;}mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() {return bt.umod();}};template <int id>internal::barrett dynamic_modint<id>::bt = 998244353;using modint998244353 = static_modint<998244353>;using modint1000000007 = static_modint<1000000007>;using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class>struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal#line 599 "/Users/gyouzasushi/kyopro/library/math/modint.hpp"template <typename T, typename std::enable_if_t<internal::is_modint<T>::value,std::nullptr_t> = nullptr>std::istream& operator>>(std::istream& is, T& v) {long long x;is >> x;v = x;return is;}template <typename T, typename std::enable_if_t<internal::is_modint<T>::value,std::nullptr_t> = nullptr>std::ostream& operator<<(std::ostream& os, const T& v) {os << v.val();return os;}#line 55 "main.cpp"using mint = modint;int main() {int k;cin >> k;vector<int> p(k), e(k);rep(i, k) cin >> p[i] >> e[i];for (int mod : {1e9 + 7, 1e9 + 9, 1e9 + 21}) {mint::set_mod(mod);mint x = 1;rep(i, k) x *= mint(p[i]).pow(e[i]);mint y = 1, z = 1;for (int r = 1; r <= p[k - 1] / 2; r++) {y *= p[k - 1] - r + 1;z *= r;if ((x * z).val() == y.val()) {cout << p[k - 1] << ' ' << r << '\n';return 0;}}}cout << "-1 -1\n";}