結果
問題 | No.2206 Popcount Sum 2 |
ユーザー |
![]() |
提出日時 | 2023-02-04 12:05:53 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 618 ms / 4,000 ms |
コード長 | 11,842 bytes |
コンパイル時間 | 2,480 ms |
コンパイル使用メモリ | 212,572 KB |
最終ジャッジ日時 | 2025-02-10 10:36:21 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 18 |
ソースコード
// clang-format off#ifdef _LOCAL#include <pch.hpp>#else#include <bits/stdc++.h>#define cerr if (false) cerr#define debug_bar#define debug(...)#define debug2(vv)#define debug3(vvv)#endifusing namespace std;using ll = long long;using ld = long double;using str = string;#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)#define REP(i,n) FOR(i,0,n)#define RREP(i,n) RFOR(i,0,n)#define ALL(c) (c).begin(), (c).end()#define SORT(c) sort(ALL(c))#define RSORT(c) sort((c).rbegin(), (c).rend())#define MIN(c) *min_element(ALL(c))#define MAX(c) *max_element(ALL(c))#define COUNT(c,v) count(ALL(c),(v))#define SZ(c) ((ll)(c).size())#define len(c) ((ll)(c).size())#define BIT(b,i) (((b)>>(i)) & 1)#define PCNT(b) ((ll)__builtin_popcountll(b))#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))#define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0)#define END(...) do { print(__VA_ARGS__); exit(0); } while (0)template<class... T> void input(T&... a) { (cin >> ... >> a); }void print() { cout << '\n'; }template<class T> void print(const T& a) { cout << a << '\n'; }template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; }template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; }cout << '\n'; }template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); }template<class T> bool chmin(T& a, const T b) { if (b < a) { a = b; return 1; } return 0; }template<class T> bool chmax(T& a, const T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) {S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; }reverse(s.begin(), s.end()); return s; }template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; }return ok; }template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok +ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; }template<class T> using PQ_max = priority_queue<T>;template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>;template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; }template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; }template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; }template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; }template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; }ll min(int a, ll b) { return min((ll)a, b); }ll min(ll a, int b) { return min(a, (ll)b); }ll max(int a, ll b) { return max((ll)a, b); }ll max(ll a, int b) { return max(a, (ll)b); }ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; }ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); }ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); }int a2i(const char& c) { assert(islower(c)); return (c - 'a'); }int A2i(const char& c) { assert(isupper(c)); return (c - 'A'); }int d2i(const char& d) { assert(isdigit(d)); return (d - '0'); }char i2a(const int& i) { assert(0 <= i && i < 26); return ('a' + i); }char i2A(const int& i) { assert(0 <= i && i < 26); return ('A' + i); }char i2d(const int& i) { assert(0 <= i && i <= 9); return ('0' + i); }using P = pair<ll,ll>;using VP = vector<P>;using VVP = vector<VP>;using VC = vector<char>;using VS = vector<string>;using VVS = vector<VS>;using VI = vector<int>;using VVI = vector<VI>;using VVVI = vector<VVI>;using VLL = vector<ll>;using VVLL = vector<VLL>;using VVVLL = vector<VVLL>;using VB = vector<bool>;using VVB = vector<VB>;using VVVB = vector<VVB>;using VD = vector<double>;using VVD = vector<VD>;using VVVD = vector<VVD>;using VLD = vector<ld>;using VVLD = vector<VLD>;using VVVLD = vector<VVLD>;const ld EPS = 1e-10;const ld PI = acosl(-1.0);constexpr int inf = (1 << 30) - 1; // 1073741824 - 1constexpr ll INF = (1LL << 62) - 1; // 4611686018427387904 - 1// --------------------------------------------------------#include <atcoder/modint>using namespace atcoder;// constexpr ll MOD = 1000003;// using mint = modint;// mint::set_mod(MOD); // write in main()// using mint = modint1000000007;using mint = modint998244353;using VM = vector<mint>;using VVM = vector<VM>;using VVVM = vector<VVM>;using VVVVM = vector<VVVM>;template<int M> istream &operator>>(istream &is, static_modint<M> &m) { ll v; is >> v; m = v; return is; }template<int M> istream &operator>>(istream &is, dynamic_modint<M> &m) { ll v; is >> v; m = v; return is; }template<int M> ostream &operator<<(ostream &os, const static_modint<M> &m) { return os << m.val(); }template<int M> ostream &operator<<(ostream &os, const dynamic_modint<M> &m) { return os << m.val(); }// It is assumed that M (= mod) is prime numberstruct combination {public:combination() : combination(1) {}combination(int n) : N(1), fact_(2,0), ifact_(2,0), inv_(2,0) {M = mint().mod();assert(0 < n && n < M);fact_[0] = fact_[1] = 1;ifact_[0] = ifact_[1] = 1;inv_[1] = 1;if (N < n) { build(n); }}mint P(int n, int k) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return fact_[n] * ifact_[n-k];}mint C(int n, int k) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return fact_[n] * ifact_[n-k] * ifact_[k];}mint H(int n, int k) {if (n == 0 && k == 0) { return 1; }if (n < 0 || k < 0) { return 0; }return C(n + k - 1, k);}mint fact(int n) {if (N < n) { build(n); }if (n < 0) { return 0; }return fact_[n];}mint ifact(int n) {if (N < n) { build(n); }if (n < 0) { return 0; }return ifact_[n];}mint inv(int n) {if (N < n) { build(n); }if (n < 0) { return 0; }return inv_[n];}mint P_naive(ll n, int k) const noexcept {if (n < 0 || k < 0 || n < k) { return 0; }mint res = 1;for (int i = 1; i <= k; i++) { res *= (n - i + 1); }return res;}mint C_naive(ll n, int k) const noexcept {if (n < 0 || k < 0 || n < k) { return 0; }if (k > n - k) { k = n - k; }mint nume = 1, deno = 1;for (int i = 1; i <= k; i++) { nume *= (n - i + 1); deno *= i; }return nume / deno;}mint H_naive(ll n, int k) const noexcept {if (n == 0 && k == 0) { return 1; }if (n < 0 || k < 0) { return 0; }return C_naive(n + k - 1, k);}private:int N;int M; // modvector<mint> fact_, ifact_, inv_;void build(int N_new) {assert(N < N_new);fact_.resize(N_new + 1);ifact_.resize(N_new + 1);inv_.resize(N_new + 1);for (int i = N + 1; i <= N_new; i++) {fact_[i] = fact_[i - 1] * i;inv_[i] = -inv_[M % i] * (M / i);ifact_[i] = ifact_[i - 1] * inv_[i];}N = N_new;}};// References:// <https://codeforces.com/blog/entry/7383>// <https://snuke.hatenablog.com/entry/2016/07/01/000000>// <https://ei1333.hateblo.jp/entry/2017/09/11/211011>// <https://ei1333.github.io/library/other/mo.cpp>// <https://cp-algorithms.com/data_structures/sqrt_decomposition.html#toc-tgt-4>// <https://blog.hamayanhamayan.com/entry/2017/04/18/012937>// Mo's algorithmstruct Mo {public:Mo(int N) : N(N) {}// クエリ [l, r) を追加する : O(1)void add_query(int l, int r) {assert(0 <= l && l <= r && r <= N);L.push_back(l);R.push_back(r);}// Mo's algorithm を実行する : O(QlogQ + f(N)N√Q)// → O(f(N)) は区間の伸縮に必要な計算量template<class AL, class AR, class DL, class DR, class O>void solve(const AL& add_L, const AR& add_R, const DL& del_L, const DR& del_R, const O& out) {int Q = L.size();int B = max(1, (int)(N / sqrt(Q))); // ブロックサイズ// クエリ順をソートvector<int> ord(Q);iota(ord.begin(), ord.end(), 0);sort(ord.begin(), ord.end(), [&](const int& i1, const int& i2) {int B1 = L[i1] / B;int B2 = L[i2] / B;if (B1 != B2) {return B1 < B2;} else {// 偶奇で r の大小関係を反転させて定数倍高速化を狙うreturn (B1 % 2 == 0 ? R[i1] < R[i2] : R[i1] > R[i2]);}});// クエリの処理int l = 0, r = 0; // [l, r) 現在の区間for (const auto& i : ord) {while (L[i] < l) { add_L(--l); }while (r < R[i]) { add_R(r++); }while (l < L[i]) { del_L(l++); }while (R[i] < r) { del_R(--r); }out(i);}}private:int N;vector<int> L, R;};// clang-format onint main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);ll Q;input(Q);VLL N(Q), M(Q);REP (i, Q) { input(N[i], M[i]); }int K = 2e5;Mo mo(K + 1);REP (i, Q) {mo.add_query(M[i] - 1, N[i] - 1);}combination Z(K);VM pow2(K + 1, 1);FOR (i, 1, K + 1) pow2[i] = pow2[i - 1] * 2;mint f = 1;VM ans(Q);int n = 0, m = 0;auto add_L = [&]([[maybe_unused]] int i) -> void { f = f - Z.C(n, m--); };auto add_R = [&]([[maybe_unused]] int i) -> void { f = f * 2 - Z.C(n++, m); };auto del_L = [&]([[maybe_unused]] int i) -> void { f = f + Z.C(n, ++m); };auto del_R = [&]([[maybe_unused]] int i) -> void { f = (f + Z.C(--n, m)) * Z.inv(2); };auto out = [&](int i) -> void { ans[i] = (pow2[N[i]] - 1) * f; };mo.solve(add_L, add_R, del_L, del_R, out);REP (i, Q) cout << ans[i] << '\n';return 0;}