結果
問題 | No.2204 Palindrome Splitting (No Rearrangement ver.) |
ユーザー | lloyz |
提出日時 | 2023-02-04 14:09:34 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,157 bytes |
コンパイル時間 | 80 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 17,700 KB |
最終ジャッジ日時 | 2024-07-03 11:50:39 |
合計ジャッジ時間 | 7,429 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 24 ms
17,564 KB |
testcase_01 | AC | 29 ms
10,624 KB |
testcase_02 | AC | 28 ms
10,624 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 659 ms
10,752 KB |
testcase_05 | AC | 353 ms
10,752 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
ソースコード
s = input() n = len(s) t = "" for ss in s: t += ss t += '0' def manacher(S): # 最長回文 O(n) # R[i] := i 文字目を中心とする最長の回文の半径(自身を含む) # 偶数長の回文を検出するには "$a$b$a$a$b$" のようにダミーを挟む # 検証: https://atcoder.jp/contests/wupc2019/submissions/8665857 # 左右で違う条件: https://atcoder.jp/contests/code-thanks-festival-2014-a-open/submissions/12911822 c, r, n = 0, 0, len(S) # center, radius, length R = [0]*n while c < n: while c-r >= 0 and c+r < n and S[c-r] == S[c+r]: r += 1 R[c] = r d = 1 # distance from center while c-d >= 0 and c+d < n and d+R[c-d] < r: R[c+d] = R[c-d] d += 1 c += d r -= d return R R = manacher(t) def is_palindrome(x, y): l = 2 * x r = 2 * y mid = (l + r) // 2 return R[mid] >= mid - l + 1 DP = [0 for _ in range(n + 1)] DP[0] = 10**18 for i in range(n): for j in range(i, n): if is_palindrome(i, j): DP[j + 1] = max(DP[j + 1], min(DP[i], j - i + 1)) print(DP[n])