結果

問題 No.2215 Slide Subset Sum
ユーザー 👑 ygussanyygussany
提出日時 2023-02-05 13:58:17
言語 C
(gcc 12.3.0)
結果
TLE  
実行時間 -
コード長 5,000 bytes
コンパイル時間 338 ms
コンパイル使用メモリ 34,520 KB
実行使用メモリ 87,836 KB
最終ジャッジ日時 2024-07-04 06:48:31
合計ジャッジ時間 5,669 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 171 ms
82,176 KB
testcase_01 TLE -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>

const int Mod = 998244353,
	bit[21] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576},
	bit_inv[21] = {1, 499122177, 748683265, 873463809, 935854081, 967049217, 982646785, 990445569, 994344961, 996294657, 997269505, 997756929, 998000641, 998122497, 998183425, 998213889, 998229121, 998236737, 998240545, 998242449, 998243401},
	root[21] = {1, 998244352, 911660635, 372528824, 929031873, 452798380, 922799308, 781712469, 476477967, 166035806, 258648936, 584193783, 63912897, 350007156, 666702199, 968855178, 629671588, 24514907, 996173970, 363395222, 565042129},
	root_inv[21] = {1, 998244352, 86583718, 509520358, 337190230, 87557064, 609441965, 135236158, 304459705, 685443576, 381598368, 335559352, 129292727, 358024708, 814576206, 708402881, 283043518, 3707709, 121392023, 704923114, 950391366};

void NTT_inline(int kk, int a[], int x[])
{
	int h, hh, i, ii, j, jj, k, l, r = bit[kk], d = bit[kk-1], tmpp, cur, prev;
	int *pi, *pii, *pj, *pjj;
	static int y[2][256];
	long long tmp;
	for (i = 0; i < r; i++) y[0][i] = a[i];
	for (k = 1, kk--, cur = 1, prev = 0; kk >= 0; k++, kk--, cur ^= 1, prev ^= 1) {
		for (h = 0, tmp = 1; h << (kk + 1) < r; h++, tmp = tmp * root[k] % Mod) {
			for (hh = 0, pi = &(y[cur][h<<kk]), pii = pi + d, pj = &(y[prev][h<<(kk+1)]), pjj = pj + bit[kk]; hh < bit[kk]; hh++, pi++, pii++, pj++, pjj++) {
				tmpp = tmp * (*pjj) % Mod;
				*pi = *pj + tmpp;
				if (*pi >= Mod) *pi -= Mod;
				*pii = *pj - tmpp;
				if (*pii < 0) *pii += Mod;
			}
		}
	}
	for (i = 0; i < r; i++) x[i] = y[prev][i];
}

void NTT_reverse_inline(int kk, int a[], int x[])
{
	int h, hh, i, ii, j, jj, k, l, r = bit[kk], d = bit[kk-1], tmpp, cur, prev;
	int *pi, *pii, *pj, *pjj;
	static int y[2][256];
	long long tmp;
	for (i = 0; i < r; i++) y[0][i] = a[i];
	for (k = 1, kk--, cur = 1, prev = 0; kk >= 0; k++, kk--, cur ^= 1, prev ^= 1) {
		for (h = 0, tmp = 1; h << (kk + 1) < r; h++, tmp = tmp * root_inv[k] % Mod) {
			for (hh = 0, pi = &(y[cur][h<<kk]), pii = pi + d, pj = &(y[prev][h<<(kk+1)]), pjj = pj + bit[kk]; hh < bit[kk]; hh++, pi++, pii++, pj++, pjj++) {
				tmpp = tmp * (*pjj) % Mod;
				*pi = *pj + tmpp;
				if (*pi >= Mod) *pi -= Mod;
				*pii = *pj - tmpp;
				if (*pii < 0) *pii += Mod;
			}
		}
	}
	for (i = 0; i < r; i++) x[i] = y[prev][i];
}

// Compute the product of two polynomials a[0-da] and b[0-db] using NTT in O(d * log d) time
void prod_poly_NTT(int da, int db, int a[], int b[], int c[])
{
	int i, k;
	static int aa[256], bb[256], cc[256];
	for (k = 0; bit[k] <= da + db; k++);
	for (i = 0; i <= da; i++) aa[i] = a[i];
	for (i = da + 1; i < bit[k]; i++) aa[i] = 0;
	for (i = 0; i <= db; i++) bb[i] = b[i];
	for (i = db + 1; i < bit[k]; i++) bb[i] = 0;
	
	static int x[256], y[256], z[256];
	NTT_inline(k, aa, x);
	if (db == da) {
		for (i = 0; i <= da; i++) if (a[i] != b[i]) break;
		if (i <= da) NTT_inline(k, bb, y);
		else for (i = 0; i < bit[k]; i++) y[i] = x[i];
	} else NTT_inline(k, bb, y);
	for (i = 0; i < bit[k]; i++) z[i] = (long long)x[i] * y[i] % Mod;
	NTT_reverse_inline(k, z, cc);
	for (i = 0; i <= da + db; i++) c[i] = (long long)cc[i] * bit_inv[k] % Mod;
}

// Compute the product of two polynomials a[0-da] and b[0-db] naively in O(da * db) time
void prod_poly_naive(int da, int db, int a[], int b[], int c[])
{
	int i, j;
	static long long tmp[256];
	for (i = 0; i <= da + db; i++) tmp[i] = 0;
	for (i = 0; i <= da; i++) for (j = 0; j <= db; j++) tmp[i+j] += (long long)a[i] * b[j] % Mod;
	for (i = 0; i <= da + db; i++) c[i] = tmp[i] % Mod;
}

// Compute the product of two polynomials a[0-da] and b[0-db] in an appropriate way
void prod_polynomial(int da, int db, int a[], int b[], int c[])
{
	if (da <= 70 || db <= 70) prod_poly_naive(da, db, a, b, c);
	else prod_poly_NTT(da, db, a, b, c);
}

int main()
{
	int i, N, M, K, A[200001];
	scanf("%d %d %d", &N, &M, &K);
	for (i = 1; i <= N; i++) scanf("%d", &(A[i]));
	
	int j, k, l, ans[200001], tmp[256], res[256];
	static int prod[200001][101];
	for (l = 1; l + M - 1 <= N; l += M + 1) {
		for (k = 1, prod[l+M][0] = 1; k < K; k++) prod[l+M][k] = 0;
		for (i = l + M - 1; i >= l; i--) {
			for (k = 1, tmp[0] = 1; k < K; k++) tmp[k] = 0;
			tmp[A[i]]++;
			prod_polynomial(K - 1, K - 1, prod[i+1], tmp, res);
			for (k = 0; k < K; k++) {
				prod[i][k] = res[k] + res[k+K];
				if (prod[i][k] >= Mod) prod[i][k] -= Mod;
			}
		}
		ans[l] = prod[l][0] - 1;
		for (k = 1, res[0] = 1; k < K; k++) res[k] = 0;
		for (i = l + 1; i <= l + M && i + M - 1 <= N; i++) {
			for (k = 1, tmp[0] = 1; k < K; k++) tmp[k] = 0;
			tmp[A[i+M-1]]++;
			prod_polynomial(K - 1, K - 1, res, tmp, res);
			for (k = 0; k < K; k++) {
				res[k] += res[k+K];
				if (res[k] >= Mod) res[k] -= Mod;
			}
			prod_polynomial(K - 1, K - 1, prod[i], res, tmp);
			ans[i] = tmp[0] + tmp[K] - 1;
			if (ans[i] >= Mod) ans[i] -= Mod;
		}
	}
	for (i = 1; i <= N - M + 1; i++) printf("%d\n", ans[i]);
	fflush(stdout);
	return 0;
}
0