結果
問題 | No.1112 冥界の音楽 |
ユーザー |
|
提出日時 | 2023-02-07 21:59:43 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 7,931 bytes |
コンパイル時間 | 12,913 ms |
コンパイル使用メモリ | 386,964 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-05 16:11:06 |
合計ジャッジ時間 | 14,451 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr, ) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => {( $(read_value!($next, $t)),* )};($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, usize1) => {read_value!($next, usize) - 1};($next:expr, $t:ty) => {$next().parse::<$t>().expect("Parse error")};}/// Verified by https://atcoder.jp/contests/arc093/submissions/3968098mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 1_000_000_007;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm// Depends on MInt.rsfn berlekamp_massey<P: mod_int::Mod + PartialEq>(n: usize,s: &[mod_int::ModInt<P>],) -> Vec<mod_int::ModInt<P>>{type MInt<P> = mod_int::ModInt<P>;let mut b = MInt::new(1);let mut cp = vec![MInt::new(0); n + 1];let mut bp = vec![mod_int::ModInt::new(0); n];cp[0] = mod_int::ModInt::new(1);bp[0] = mod_int::ModInt::new(1);let mut m = 1;let mut l = 0;for i in 0..2 * n + 1 {assert!(i >= l);assert!(l <= n);if i == 2 * n { break; }let mut d = s[i];for j in 1..l + 1 {d += cp[j] * s[i - j];}if d == MInt::new(0) {m += 1;continue;}if 2 * l > i {// cp -= d/b * x^m * bplet factor = d * b.inv();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}m += 1;continue;}let factor = d * b.inv();let tp = cp.clone();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}bp = tp;b = d;l = i + 1 - l;m = 1;}cp[0..l + 1].to_vec()}fn polymul(a: &[MInt], b: &[MInt], mo: &[MInt]) -> Vec<MInt> {let n = a.len();debug_assert_eq!(b.len(), n);debug_assert_eq!(mo.len(), n + 1);debug_assert_eq!(mo[n], 1.into());let mut ret = vec![MInt::new(0); 2 * n - 1];for i in 0..n {for j in 0..n {ret[i + j] += a[i] * b[j];}}for i in (n..2 * n - 1).rev() {let val = ret[i];for j in 0..n {ret[i - n + j] -= val * mo[j];}}ret[..n].to_vec()}fn polypow(a: &[MInt], mut e: i64, mo: &[MInt]) -> Vec<MInt> {let n = a.len();debug_assert_eq!(mo.len(), n + 1);let mut prod = vec![MInt::new(0); n];prod[0] += 1;let mut cur = a.to_vec();while e > 0 {if e % 2 == 1 {prod = polymul(&prod, &cur, mo);}cur = polymul(&cur, &cur, mo);e /= 2;}prod}// Finds u a^e v^T by using Berlekamp-massey algorithm.// The linear map a is given as a closure.fn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt {let k = u.len();// Find first 2k termslet mut terms = vec![MInt::new(0); 2 * k];let mut cur = u.to_vec();for pos in 0..2 * k {for i in 0..k {terms[pos] += cur[i] * v[i];}cur = a(&cur);}let mut poly = berlekamp_massey(k, &terms);poly.reverse();if poly.len() == 2 {let r = -poly[0];return terms[0] * r.pow(e);}let mut base = vec![MInt::new(0); poly.len() - 1];base[1] += 1;let powpoly = polypow(&base, e, &poly);let mut ans = MInt::new(0);for i in 0..poly.len() - 1 {ans += powpoly[i] * terms[i];}ans}// Tags: black-box-linear-algebrafn main() {input! {k: usize, m: usize, n: i64,pqr: [(usize1, usize1, usize1); m],}let mut a = vec![vec![MInt::new(0); k * k]; k * k];for &(p, q, r) in &pqr {a[p * k + q][q * k + r] += 1;}let mut u = vec![MInt::new(0); k * k];let mut v = vec![MInt::new(0); k * k];for i in 0..k {u[i] += 1;v[i * k] += 1;}let a = |u: &[MInt]| {let mut v = vec![MInt::new(0); k * k];for &(p, q, r) in &pqr {v[q * k + r] += u[p * k + q];}v};println!("{}", eval_matpow(a, n - 2, &u, &v));}