結果

問題 No.1112 冥界の音楽
ユーザー koba-e964
提出日時 2023-02-07 22:09:43
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1 ms / 2,000 ms
コード長 8,063 bytes
コンパイル時間 14,191 ms
コンパイル使用メモリ 397,808 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-05 16:18:13
合計ジャッジ時間 15,612 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
/// Verified by https://atcoder.jp/contests/arc093/submissions/3968098
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// Depends on MInt.rs
fn berlekamp_massey<P: mod_int::Mod + PartialEq>(
n: usize,
s: &[mod_int::ModInt<P>],
) -> Vec<mod_int::ModInt<P>>{
type MInt<P> = mod_int::ModInt<P>;
let mut b = MInt::new(1);
let mut cp = vec![MInt::new(0); n + 1];
let mut bp = vec![mod_int::ModInt::new(0); n];
cp[0] = mod_int::ModInt::new(1);
bp[0] = mod_int::ModInt::new(1);
let mut m = 1;
let mut l = 0;
for i in 0..2 * n + 1 {
assert!(i >= l);
assert!(l <= n);
if i == 2 * n { break; }
let mut d = s[i];
for j in 1..l + 1 {
d += cp[j] * s[i - j];
}
if d == MInt::new(0) {
m += 1;
continue;
}
if 2 * l > i {
// cp -= d/b * x^m * bp
let factor = d * b.inv();
for j in 0..n + 1 - m {
cp[m + j] -= factor * bp[j];
}
m += 1;
continue;
}
let factor = d * b.inv();
let tp = cp.clone();
for j in 0..n + 1 - m {
cp[m + j] -= factor * bp[j];
}
bp = tp;
b = d;
l = i + 1 - l;
m = 1;
}
cp[0..l + 1].to_vec()
}
fn polymul(a: &[MInt], b: &[MInt], mo: &[MInt]) -> Vec<MInt> {
let n = a.len();
debug_assert_eq!(b.len(), n);
debug_assert_eq!(mo.len(), n + 1);
debug_assert_eq!(mo[n], 1.into());
let mut ret = vec![MInt::new(0); 2 * n - 1];
for i in 0..n {
for j in 0..n {
ret[i + j] += a[i] * b[j];
}
}
for i in (n..2 * n - 1).rev() {
let val = ret[i];
for j in 0..n {
ret[i - n + j] -= val * mo[j];
}
}
ret[..n].to_vec()
}
fn polypow(a: &[MInt], mut e: i64, mo: &[MInt]) -> Vec<MInt> {
let n = a.len();
debug_assert_eq!(mo.len(), n + 1);
let mut prod = vec![MInt::new(0); n];
prod[0] += 1;
let mut cur = a.to_vec();
while e > 0 {
if e % 2 == 1 {
prod = polymul(&prod, &cur, mo);
}
cur = polymul(&cur, &cur, mo);
e /= 2;
}
prod
}
// Finds u a^e v^T by using Berlekamp-massey algorithm.
// The linear map a is given as a closure.
// Complexity: O(n^2 log e + nT(n)) where n = |u| and T(n) = complexity of a.
// Ref: https://yukicoder.me/wiki/black_box_linear_algebra
fn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt {
let k = u.len();
// Find first 2k terms
let mut terms = vec![MInt::new(0); 2 * k];
let mut cur = u.to_vec();
for pos in 0..2 * k {
for i in 0..k {
terms[pos] += cur[i] * v[i];
}
cur = a(&cur);
}
let mut poly = berlekamp_massey(k, &terms);
poly.reverse();
if poly.len() == 2 {
let r = -poly[0];
return terms[0] * r.pow(e);
}
let mut base = vec![MInt::new(0); poly.len() - 1];
base[1] += 1;
let powpoly = polypow(&base, e, &poly);
let mut ans = MInt::new(0);
for i in 0..poly.len() - 1 {
ans += powpoly[i] * terms[i];
}
ans
}
// Tags: black-box-linear-algebra
fn main() {
input! {
k: usize, m: usize, n: i64,
pqr: [(usize1, usize1, usize1); m],
}
let mut a = vec![vec![MInt::new(0); k * k]; k * k];
for &(p, q, r) in &pqr {
a[p * k + q][q * k + r] += 1;
}
let mut u = vec![MInt::new(0); k * k];
let mut v = vec![MInt::new(0); k * k];
for i in 0..k {
u[i] += 1;
v[i * k] += 1;
}
let a = |u: &[MInt]| {
let mut v = vec![MInt::new(0); k * k];
for &(p, q, r) in &pqr {
v[q * k + r] += u[p * k + q];
}
v
};
println!("{}", eval_matpow(a, n - 2, &u, &v));
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0