結果
問題 | No.1112 冥界の音楽 |
ユーザー | koba-e964 |
提出日時 | 2023-02-07 22:09:43 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 8,063 bytes |
コンパイル時間 | 14,191 ms |
コンパイル使用メモリ | 397,808 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-05 16:18:13 |
合計ジャッジ時間 | 15,612 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 1 ms
5,376 KB |
testcase_24 | AC | 1 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 1 ms
5,376 KB |
testcase_30 | AC | 1 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 1 ms
5,376 KB |
testcase_33 | AC | 1 ms
5,376 KB |
testcase_34 | AC | 1 ms
5,376 KB |
testcase_35 | AC | 1 ms
5,376 KB |
testcase_36 | AC | 1 ms
5,376 KB |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm // Depends on MInt.rs fn berlekamp_massey<P: mod_int::Mod + PartialEq>( n: usize, s: &[mod_int::ModInt<P>], ) -> Vec<mod_int::ModInt<P>>{ type MInt<P> = mod_int::ModInt<P>; let mut b = MInt::new(1); let mut cp = vec![MInt::new(0); n + 1]; let mut bp = vec![mod_int::ModInt::new(0); n]; cp[0] = mod_int::ModInt::new(1); bp[0] = mod_int::ModInt::new(1); let mut m = 1; let mut l = 0; for i in 0..2 * n + 1 { assert!(i >= l); assert!(l <= n); if i == 2 * n { break; } let mut d = s[i]; for j in 1..l + 1 { d += cp[j] * s[i - j]; } if d == MInt::new(0) { m += 1; continue; } if 2 * l > i { // cp -= d/b * x^m * bp let factor = d * b.inv(); for j in 0..n + 1 - m { cp[m + j] -= factor * bp[j]; } m += 1; continue; } let factor = d * b.inv(); let tp = cp.clone(); for j in 0..n + 1 - m { cp[m + j] -= factor * bp[j]; } bp = tp; b = d; l = i + 1 - l; m = 1; } cp[0..l + 1].to_vec() } fn polymul(a: &[MInt], b: &[MInt], mo: &[MInt]) -> Vec<MInt> { let n = a.len(); debug_assert_eq!(b.len(), n); debug_assert_eq!(mo.len(), n + 1); debug_assert_eq!(mo[n], 1.into()); let mut ret = vec![MInt::new(0); 2 * n - 1]; for i in 0..n { for j in 0..n { ret[i + j] += a[i] * b[j]; } } for i in (n..2 * n - 1).rev() { let val = ret[i]; for j in 0..n { ret[i - n + j] -= val * mo[j]; } } ret[..n].to_vec() } fn polypow(a: &[MInt], mut e: i64, mo: &[MInt]) -> Vec<MInt> { let n = a.len(); debug_assert_eq!(mo.len(), n + 1); let mut prod = vec![MInt::new(0); n]; prod[0] += 1; let mut cur = a.to_vec(); while e > 0 { if e % 2 == 1 { prod = polymul(&prod, &cur, mo); } cur = polymul(&cur, &cur, mo); e /= 2; } prod } // Finds u a^e v^T by using Berlekamp-massey algorithm. // The linear map a is given as a closure. // Complexity: O(n^2 log e + nT(n)) where n = |u| and T(n) = complexity of a. // Ref: https://yukicoder.me/wiki/black_box_linear_algebra fn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt { let k = u.len(); // Find first 2k terms let mut terms = vec![MInt::new(0); 2 * k]; let mut cur = u.to_vec(); for pos in 0..2 * k { for i in 0..k { terms[pos] += cur[i] * v[i]; } cur = a(&cur); } let mut poly = berlekamp_massey(k, &terms); poly.reverse(); if poly.len() == 2 { let r = -poly[0]; return terms[0] * r.pow(e); } let mut base = vec![MInt::new(0); poly.len() - 1]; base[1] += 1; let powpoly = polypow(&base, e, &poly); let mut ans = MInt::new(0); for i in 0..poly.len() - 1 { ans += powpoly[i] * terms[i]; } ans } // Tags: black-box-linear-algebra fn main() { input! { k: usize, m: usize, n: i64, pqr: [(usize1, usize1, usize1); m], } let mut a = vec![vec![MInt::new(0); k * k]; k * k]; for &(p, q, r) in &pqr { a[p * k + q][q * k + r] += 1; } let mut u = vec![MInt::new(0); k * k]; let mut v = vec![MInt::new(0); k * k]; for i in 0..k { u[i] += 1; v[i * k] += 1; } let a = |u: &[MInt]| { let mut v = vec![MInt::new(0); k * k]; for &(p, q, r) in &pqr { v[q * k + r] += u[p * k + q]; } v }; println!("{}", eval_matpow(a, n - 2, &u, &v)); }