結果
問題 | No.1479 Matrix Eraser |
ユーザー | ecottea |
提出日時 | 2023-02-08 17:08:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 372 ms / 3,000 ms |
コード長 | 10,333 bytes |
コンパイル時間 | 4,225 ms |
コンパイル使用メモリ | 280,332 KB |
実行使用メモリ | 74,496 KB |
最終ジャッジ日時 | 2024-07-06 04:19:22 |
合計ジャッジ時間 | 12,958 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 14 ms
26,624 KB |
testcase_01 | AC | 14 ms
26,624 KB |
testcase_02 | AC | 14 ms
26,624 KB |
testcase_03 | AC | 14 ms
26,624 KB |
testcase_04 | AC | 13 ms
26,624 KB |
testcase_05 | AC | 13 ms
26,624 KB |
testcase_06 | AC | 14 ms
26,624 KB |
testcase_07 | AC | 52 ms
32,128 KB |
testcase_08 | AC | 80 ms
35,948 KB |
testcase_09 | AC | 149 ms
45,364 KB |
testcase_10 | AC | 289 ms
59,008 KB |
testcase_11 | AC | 179 ms
48,468 KB |
testcase_12 | AC | 62 ms
33,588 KB |
testcase_13 | AC | 78 ms
35,916 KB |
testcase_14 | AC | 64 ms
33,888 KB |
testcase_15 | AC | 26 ms
28,160 KB |
testcase_16 | AC | 73 ms
34,816 KB |
testcase_17 | AC | 345 ms
64,508 KB |
testcase_18 | AC | 331 ms
64,768 KB |
testcase_19 | AC | 340 ms
64,640 KB |
testcase_20 | AC | 337 ms
64,592 KB |
testcase_21 | AC | 334 ms
64,512 KB |
testcase_22 | AC | 336 ms
64,384 KB |
testcase_23 | AC | 336 ms
64,512 KB |
testcase_24 | AC | 334 ms
64,512 KB |
testcase_25 | AC | 340 ms
64,512 KB |
testcase_26 | AC | 336 ms
64,640 KB |
testcase_27 | AC | 127 ms
33,024 KB |
testcase_28 | AC | 124 ms
32,768 KB |
testcase_29 | AC | 125 ms
33,280 KB |
testcase_30 | AC | 126 ms
32,876 KB |
testcase_31 | AC | 127 ms
32,748 KB |
testcase_32 | AC | 76 ms
37,964 KB |
testcase_33 | AC | 76 ms
37,996 KB |
testcase_34 | AC | 75 ms
37,908 KB |
testcase_35 | AC | 75 ms
37,880 KB |
testcase_36 | AC | 76 ms
38,064 KB |
testcase_37 | AC | 31 ms
29,920 KB |
testcase_38 | AC | 140 ms
31,852 KB |
testcase_39 | AC | 372 ms
74,496 KB |
testcase_40 | AC | 14 ms
26,708 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-12; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif //【二部グラフの最大マッチング,最小辺被覆,最小点被覆】 /* * 二部グラフ (S, T) の最大マッチングなどを求める. * * Bipartite_matching(int n, int m) : O(|V|) * S, T の要素数を n, m で初期化する. * * add_edge(int s, int t) : O(1) * s∈S と t∈T の間に辺を張る. * * int solve() : O( min(|V|^(2/3) (|V| + |E|), (|V| + |E|)^(3/2)) ) * フローを流し計算を行い,最大マッチングの大きさを返す. * 戻り値は「|最小点被覆|」,「|V| - |最小辺被覆|」,「|V| - |最大独立集合|」とも解釈できる. * * vector<pii> maximum_matching() : O(|E|) * 最大マッチングに含まれる辺 {s, t} ∈ S×T のリストを返す. * 制約:solve() の後に呼び出すこと. * * vector<pii> minimum_edge_covering() : O(|V| + |E|) * 最小辺被覆に含まれる辺 {s, t} ∈ S×T のリストを返す. * es が最小辺被覆であるとは,任意の頂点がある e∈es の端点として現れることをいう. * 制約:孤立点が存在しない.solve() の後に呼び出すこと. * * vvi minimum_vertex_covering() : O(|V| + |E|) * 最小点被覆の例を具体的に求め,S の頂点を vs[0], T の頂点を vs[1] に格納し,vs を返す. * vs が最小点被覆であるとは,任意の辺がある v∈vs を端点にもつことをいう. * 制約:孤立点が存在しない.solve() の後に呼び出すこと. * *(最大流問題) */ struct Bipartite_matching { // 参考 : https://qiita.com/drken/items/e805e3f514acceb87602 // 参考 : https://qiita.com/drken/items/7f98315b56c95a6181a4 int n, m; mf_graph<int> g; int ST, GL; // |S|, |T| を渡して初期化する. Bipartite_matching(int n, int m) : n(n), m(m) { // verify : https://judge.yosupo.jp/problem/bipartitematching g = mf_graph<int>(n + m + 2); // スタートとゴールおよびそれらとの間の辺を先に作っておく. ST = n + m; GL = n + m + 1; rep(i, n) g.add_edge(ST, i, 1); rep(j, m) g.add_edge(j + n, GL, 1); } // s∈S と t∈T の間に辺を張る. void add_edge(int s, int t) { // verify : https://judge.yosupo.jp/problem/bipartitematching g.add_edge(s, t + n, 1); } // 計算を実行し,最大マッチングの大きさを返す. int solve() { // verify : https://judge.yosupo.jp/problem/bipartitematching return g.flow(ST, GL); } // 最大マッチングの例を具体的に求める. vector<pii> maximum_matching() { // verify : https://judge.yosupo.jp/problem/bipartitematching vector<pii> es; repe(e, g.edges()) { // フローが流れている S, T 間の辺がマッチングに対応する. if (e.flow == 1 && e.from != ST && e.to != GL) { es.push_back({ e.from, e.to - n }); } } return es; } // 最小辺被覆の例を具体的に求める. vector<pii> minimum_edge_covering() { vector<pii> es; // マッチングに含まれない S, T の頂点の集合 unordered_set<int> iso_s, iso_t; rep(i, n) if (g.get_edge(i).flow == 0) iso_s.insert(i); rep(j, m) if (g.get_edge(j + n).flow == 0) iso_t.insert(j + n); repe(e, g.edges()) { // マッチングに含まれる S, T の頂点はそのまま結ぶ. if (e.flow == 1 && e.from != ST && e.to != GL) { es.push_back({ e.from, e.to - n }); } // マッチングに含まれない S の頂点は,適当な T の頂点と結んでおく. else if (iso_s.count(e.from)) { es.push_back({ e.from, e.to - n }); iso_s.erase(e.from); } // マッチングに含まれない T の頂点は,適当な S の頂点と結んでおく. else if (iso_t.count(e.to)) { es.push_back({ e.from, e.to - n }); iso_t.erase(e.to); } } return es; } // 最小点被覆の例を具体的に求める. vvi minimum_vertex_covering() { // verify : https://judge.yosupo.jp/problem/assignment vvi vs(2); // ar[v] : g の残余グラフで ST から v に到達可能か vb ar = g.min_cut(ST); // 残余グラフで ST から到達不可能な S の頂点を選ぶ. rep(i, n) if (!ar[i]) vs[0].push_back(i); // 残余グラフで ST から到達可能な T の頂点を選ぶ. rep(j, m) if (ar[n + j]) vs[1].push_back(j); return vs; } }; //【座標圧縮】O(n log n) /* * 大きさ n の多重集合 a を 0 以上 |a| 未満の範囲に座標圧縮した結果を a_cp に格納し,その要素数を返す. * また xs[j] に圧縮された座標 j に対応する元の座標を格納する. * * a に重複する要素がなければ,a_cp[i] は a[i] が昇順で何番目かを表し, * xs[j] は昇順で j 番目の要素が何かを表す. */ template <class T> int coordinate_compression(const vector<T>& a, vi& a_cp, vector<T>* xs = nullptr) { // verify : https://atcoder.jp/contests/abc036/tasks/abc036_c int n = sz(a); if (xs == nullptr) xs = new vector<T>; // *xs : a の x 座標のユニークな昇順列 *xs = a; uniq(*xs); // a[i] が xs において何番目かを求める. a_cp.resize(n); rep(i, n) a_cp[i] = lbpos(*xs, a[i]); return sz(*xs); } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int h, w; cin >> h >> w; vvi a(h, vi(w)); cin >> a; int m = (int)5e5; vvi xs(m + 1), ys(m + 1); rep(i, h) rep(j, w) { xs[a[i][j]].push_back(i); ys[a[i][j]].push_back(j); } int res = 0; repi(t, 1, m) { if (xs[t].empty()) continue; vi x_cp, y_cp; int h_cp = coordinate_compression(xs[t], x_cp); int w_cp = coordinate_compression(ys[t], y_cp); Bipartite_matching g(h_cp, w_cp); rep(i, sz(x_cp)) g.add_edge(x_cp[i], y_cp[i]); res += g.solve(); } cout << res << endl; }