結果

問題 No.2211 Frequency Table of GCD
ユーザー siganaisiganai
提出日時 2023-02-10 21:43:51
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 178 ms / 2,000 ms
コード長 9,300 bytes
コンパイル時間 2,281 ms
コンパイル使用メモリ 212,476 KB
実行使用メモリ 26,428 KB
最終ジャッジ日時 2024-07-07 17:55:17
合計ジャッジ時間 6,158 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 115 ms
23,532 KB
testcase_04 AC 87 ms
17,920 KB
testcase_05 AC 133 ms
20,480 KB
testcase_06 AC 112 ms
21,740 KB
testcase_07 AC 140 ms
24,256 KB
testcase_08 AC 7 ms
5,376 KB
testcase_09 AC 5 ms
5,376 KB
testcase_10 AC 12 ms
5,376 KB
testcase_11 AC 9 ms
5,376 KB
testcase_12 AC 14 ms
5,376 KB
testcase_13 AC 82 ms
17,408 KB
testcase_14 AC 132 ms
24,180 KB
testcase_15 AC 111 ms
22,476 KB
testcase_16 AC 128 ms
23,156 KB
testcase_17 AC 110 ms
20,412 KB
testcase_18 AC 171 ms
26,428 KB
testcase_19 AC 178 ms
26,320 KB
testcase_20 AC 171 ms
26,340 KB
testcase_21 AC 171 ms
26,196 KB
testcase_22 AC 174 ms
26,352 KB
testcase_23 AC 132 ms
25,616 KB
testcase_24 AC 163 ms
26,260 KB
testcase_25 AC 13 ms
6,940 KB
testcase_26 AC 1 ms
6,940 KB
testcase_27 AC 140 ms
26,336 KB
testcase_28 AC 138 ms
26,340 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>

#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
    in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
    ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;

#line 2 "library/modint/Modint.hpp"
template <int mod>
struct Modint{
    int x;
    Modint():x(0) {}
    Modint(long long y): x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    Modint &operator += (const Modint &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator -= (const Modint &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator *= (const Modint &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;}
    Modint &operator /= (const Modint &p) {
        *this *= p.inverse();
        return *this;}
    Modint operator -() const{return Modint(-x);}
    Modint operator +(const Modint &p) const {return Modint(*this) += p;}
    Modint operator -(const Modint &p) const {return Modint(*this) -= p;}
    Modint operator *(const Modint &p) const {return Modint(*this) *= p;}
    Modint operator /(const Modint &p) const {return Modint(*this) /= p;}
    Modint &operator ++() {if(x == mod - 1) x = 0; else x++; return *this;}
    Modint &operator --() {if(x == 0) x = mod - 1; else x--; return *this;} 
    bool operator == (const Modint &p) const {return x == p.x;}
    bool operator != (const Modint &p) const {return x != p.x;}
    Modint inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return Modint(u);}
    Modint pow(long long n) const {
        Modint ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;}
    friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; }
    friend istream &operator>>(istream &is, Modint &a) {
        long long t;
        is >> t;
        a = Modint<mod>(t);
        return (is);
    }
    static constexpr int get_mod() {return mod;}
};
#line 88 "main.cpp"
using mint = Modint<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/multiplicative-function/divisor-multiple-transform.hpp"
// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
    vector<bool> sieve(N / 3 + 1, 1);
    for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
        if (!sieve[i]) continue;
        for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
                qe = sieve.size();
            q < qe; q += r = s - r)
        sieve[q] = 0;
    }
    vector<int> ret{2, 3};
    for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
        if (sieve[i]) ret.push_back(p);
    while (!ret.empty() && ret.back() > N) ret.pop_back();
    return ret;
}

struct divisor_transform {
    template <typename T>
    static void zeta_transform(vector<T> &a) {
        int N = a.size() - 1;
        auto sieve = prime_enumerate(N);
        for (auto &p : sieve) for (int k = 1; k * p <= N; ++k) a[k * p] += a[k];
    }
    template <typename T>
    static void mobius_transform(vector<T> &a) {
        int N = a.size() - 1;
        auto sieve = prime_enumerate(N);
        for (auto &p : sieve) for (int k = N / p; k > 0; --k) a[k * p] -= a[k];
    }

    template <typename T>
    static void zeta_transform(map<long long, T> &a) {
        for (auto p = rbegin(a); p != rend(a); p++) for (auto &x : a) {
            if (p->first == x.first) break;
            if (p->first % x.first == 0) p->second += x.second;
        }
  }
    template <typename T>
    static void mobius_transform(map<long long, T> &a) {
        for (auto &x : a) for (auto p = rbegin(a); p != rend(a); p++) {
            if (x.first == p->first) break;
            if (p->first % x.first == 0) p->second -= x.second;
        }
    }
};

struct multiple_transform {
    template <typename T>
    static void zeta_transform(vector<T> &a) {
        int N = a.size() - 1;
        auto sieve = prime_enumerate(N);
        for (auto &p : sieve) for (int k = N / p; k > 0; --k) a[k] += a[k * p];
    }
    template <typename T>
    static void mobius_transform(vector<T> &a) {
        int N = a.size() - 1;
        auto sieve = prime_enumerate(N);
        for (auto &p : sieve) for (int k = 1; k * p <= N; ++k) a[k] -= a[k * p];
    }

    template <typename T>
    static void zeta_transform(map<long long, T> &a) {
        for (auto &x : a) 
            for (auto p = rbegin(a); p->first != x.first; p++) 
                if (p->first % x.first == 0) x.second += p->second;
    }
    template <typename T>
    static void mobius_transform(map<long long, T> &a) {
        for (auto p1 = rbegin(a); p1 != rend(a); p1++)
            for (auto p2 = rbegin(a); p2 != p1; p2++) 
                if (p2->first % p1->first == 0) p1->second -= p2->second;
    }
};
#line 93 "main.cpp"
int main() {
    INT(n,m);
    VEC(int,a,n);
    vm ans(m+1);
    vvi div(m+1);
    rep(i,1,m+1) {
        rep(j,i,m+1,i) div[j].emplace_back(i);
    }
    rep(i,n) {
        for(auto &p:div[a[i]]) ans[p] += 1;
    }
    rep(i,m+1) {
        ans[i] = mint(2).pow(ans[i].x) - 1;
    }
    multiple_transform::mobius_transform<mint>(ans);
    rep(i,1,m+1) cout << ans[i] << '\n';
}
0