結果

問題 No.2211 Frequency Table of GCD
ユーザー タコイモタコイモ
提出日時 2023-02-10 21:56:17
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 973 ms / 2,000 ms
コード長 4,325 bytes
コンパイル時間 170 ms
コンパイル使用メモリ 82,440 KB
実行使用メモリ 108,012 KB
最終ジャッジ日時 2024-07-07 17:59:19
合計ジャッジ時間 17,068 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 48 ms
54,656 KB
testcase_01 AC 44 ms
55,168 KB
testcase_02 AC 44 ms
54,656 KB
testcase_03 AC 471 ms
80,856 KB
testcase_04 AC 525 ms
91,008 KB
testcase_05 AC 733 ms
101,056 KB
testcase_06 AC 562 ms
86,912 KB
testcase_07 AC 788 ms
98,044 KB
testcase_08 AC 154 ms
86,016 KB
testcase_09 AC 147 ms
82,416 KB
testcase_10 AC 224 ms
98,040 KB
testcase_11 AC 186 ms
91,136 KB
testcase_12 AC 234 ms
101,376 KB
testcase_13 AC 495 ms
87,936 KB
testcase_14 AC 607 ms
85,752 KB
testcase_15 AC 530 ms
82,940 KB
testcase_16 AC 562 ms
85,588 KB
testcase_17 AC 642 ms
98,264 KB
testcase_18 AC 940 ms
107,392 KB
testcase_19 AC 890 ms
107,648 KB
testcase_20 AC 876 ms
107,724 KB
testcase_21 AC 901 ms
107,776 KB
testcase_22 AC 896 ms
108,012 KB
testcase_23 AC 472 ms
80,836 KB
testcase_24 AC 973 ms
107,904 KB
testcase_25 AC 92 ms
104,144 KB
testcase_26 AC 43 ms
55,040 KB
testcase_27 AC 850 ms
107,824 KB
testcase_28 AC 922 ms
107,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def gcd(a, b):
    while b: a, b = b, a % b
    return a
def isPrimeMR(n):
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret
def divisors(N):
    pf = primeFactor(N)
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = []
        for i in range(pf[p]+1):
            for r in ret_prev:
                ret.append(r * (p ** i))
    return sorted(ret)
def divisors_pf(pf):
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = []
        for i in range(pf[p]+1):
            for r in ret_prev:
                ret.append(r * (p ** i))
    return sorted(ret)
def isPrime(n):
    if n in {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}: return 1
    if n <= 100: return 0
    for i in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]:
        if n % i == 0: return 0
    return isPrimeMR(n)
def findPrime(n):
    if n <= 2: return 2
    i = n | 1
    while 1:
        if isPrime(i): return i
        i += 2
def findNttFriendlyPrime(n, k, m=1):
    a = (n >> k) + 1
    i = (a << k) + 1
    while 1:
        if (i - 1) % m == 0:
            if isPrime(i):
                g = primitiveRoot(i)
                ig = pow(g, i - 2, i)
                return (i, g, ig) # p, g, invg
        i += 1 << k
import time
import sys
#sys.setrecursionlimit(500000)
def I(): return int(sys.stdin.readline().rstrip())
def MI(): return map(int,sys.stdin.readline().rstrip().split())
def TI(): return tuple(map(int,sys.stdin.readline().rstrip().split()))
def LI(): return list(map(int,sys.stdin.readline().rstrip().split()))
def S(): return sys.stdin.readline().rstrip()
def LS(): return list(sys.stdin.readline().rstrip())
#for i, pi in enumerate(p):
from collections import defaultdict,deque
import bisect
import itertools
dic = defaultdict(int)
def make_divisors(n):
    lower_divisors , upper_divisors = [], []
    i = 1
    while i*i <= n:
        if n % i == 0:
            lower_divisors.append(i)
            if i != n // i:
                upper_divisors.append(n//i)
        i += 1
    return lower_divisors + upper_divisors[::-1]
d = deque()
N,M = MI()
A = LI()
mod = 998244353
#たかいやつから数える
S = [0]*(M) #xで割り切れる個数
for i in A:
  s = divisors(i)#make_divisors(i)

  for j in s:
    S[j-1] += 1
ans = [0]*(M)
for i in range(M-1,-1,-1):
  ans[i] = (ans[i]+pow(2,S[i],mod)-1)%mod
  s = divisors(i+1)#make_divisors(i+1)
  for j in s:
    if i+1 == j:
      continue
    ans[j-1] -= ans[i]
for i in ans:
  print(i)
  
0