結果
問題 | No.2211 Frequency Table of GCD |
ユーザー | タコイモ |
提出日時 | 2023-02-10 21:56:17 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 973 ms / 2,000 ms |
コード長 | 4,325 bytes |
コンパイル時間 | 170 ms |
コンパイル使用メモリ | 82,440 KB |
実行使用メモリ | 108,012 KB |
最終ジャッジ日時 | 2024-07-07 17:59:19 |
合計ジャッジ時間 | 17,068 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
54,656 KB |
testcase_01 | AC | 44 ms
55,168 KB |
testcase_02 | AC | 44 ms
54,656 KB |
testcase_03 | AC | 471 ms
80,856 KB |
testcase_04 | AC | 525 ms
91,008 KB |
testcase_05 | AC | 733 ms
101,056 KB |
testcase_06 | AC | 562 ms
86,912 KB |
testcase_07 | AC | 788 ms
98,044 KB |
testcase_08 | AC | 154 ms
86,016 KB |
testcase_09 | AC | 147 ms
82,416 KB |
testcase_10 | AC | 224 ms
98,040 KB |
testcase_11 | AC | 186 ms
91,136 KB |
testcase_12 | AC | 234 ms
101,376 KB |
testcase_13 | AC | 495 ms
87,936 KB |
testcase_14 | AC | 607 ms
85,752 KB |
testcase_15 | AC | 530 ms
82,940 KB |
testcase_16 | AC | 562 ms
85,588 KB |
testcase_17 | AC | 642 ms
98,264 KB |
testcase_18 | AC | 940 ms
107,392 KB |
testcase_19 | AC | 890 ms
107,648 KB |
testcase_20 | AC | 876 ms
107,724 KB |
testcase_21 | AC | 901 ms
107,776 KB |
testcase_22 | AC | 896 ms
108,012 KB |
testcase_23 | AC | 472 ms
80,836 KB |
testcase_24 | AC | 973 ms
107,904 KB |
testcase_25 | AC | 92 ms
104,144 KB |
testcase_26 | AC | 43 ms
55,040 KB |
testcase_27 | AC | 850 ms
107,824 KB |
testcase_28 | AC | 922 ms
107,816 KB |
ソースコード
def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(N): pf = primeFactor(N) ret = [1] for p in pf: ret_prev = ret ret = [] for i in range(pf[p]+1): for r in ret_prev: ret.append(r * (p ** i)) return sorted(ret) def divisors_pf(pf): ret = [1] for p in pf: ret_prev = ret ret = [] for i in range(pf[p]+1): for r in ret_prev: ret.append(r * (p ** i)) return sorted(ret) def isPrime(n): if n in {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}: return 1 if n <= 100: return 0 for i in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]: if n % i == 0: return 0 return isPrimeMR(n) def findPrime(n): if n <= 2: return 2 i = n | 1 while 1: if isPrime(i): return i i += 2 def findNttFriendlyPrime(n, k, m=1): a = (n >> k) + 1 i = (a << k) + 1 while 1: if (i - 1) % m == 0: if isPrime(i): g = primitiveRoot(i) ig = pow(g, i - 2, i) return (i, g, ig) # p, g, invg i += 1 << k import time import sys #sys.setrecursionlimit(500000) def I(): return int(sys.stdin.readline().rstrip()) def MI(): return map(int,sys.stdin.readline().rstrip().split()) def TI(): return tuple(map(int,sys.stdin.readline().rstrip().split())) def LI(): return list(map(int,sys.stdin.readline().rstrip().split())) def S(): return sys.stdin.readline().rstrip() def LS(): return list(sys.stdin.readline().rstrip()) #for i, pi in enumerate(p): from collections import defaultdict,deque import bisect import itertools dic = defaultdict(int) def make_divisors(n): lower_divisors , upper_divisors = [], [] i = 1 while i*i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] d = deque() N,M = MI() A = LI() mod = 998244353 #たかいやつから数える S = [0]*(M) #xで割り切れる個数 for i in A: s = divisors(i)#make_divisors(i) for j in s: S[j-1] += 1 ans = [0]*(M) for i in range(M-1,-1,-1): ans[i] = (ans[i]+pow(2,S[i],mod)-1)%mod s = divisors(i+1)#make_divisors(i+1) for j in s: if i+1 == j: continue ans[j-1] -= ans[i] for i in ans: print(i)