結果
問題 | No.2209 Flip and Reverse |
ユーザー | tomarint |
提出日時 | 2023-02-10 22:04:43 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 16,523 bytes |
コンパイル時間 | 20,291 ms |
コンパイル使用メモリ | 388,608 KB |
実行使用メモリ | 6,912 KB |
最終ジャッジ日時 | 2024-07-07 16:20:23 |
合計ジャッジ時間 | 12,449 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 0 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 11 ms
6,784 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 15 ms
6,784 KB |
testcase_15 | AC | 14 ms
6,912 KB |
testcase_16 | AC | 14 ms
6,784 KB |
testcase_17 | AC | 16 ms
6,784 KB |
testcase_18 | AC | 16 ms
6,784 KB |
testcase_19 | AC | 16 ms
6,784 KB |
testcase_20 | AC | 16 ms
6,784 KB |
testcase_21 | AC | 17 ms
6,912 KB |
testcase_22 | AC | 17 ms
6,784 KB |
testcase_23 | AC | 16 ms
6,784 KB |
testcase_24 | AC | 16 ms
6,912 KB |
testcase_25 | AC | 15 ms
6,912 KB |
testcase_26 | AC | 16 ms
6,784 KB |
testcase_27 | AC | 15 ms
6,784 KB |
testcase_28 | AC | 10 ms
6,784 KB |
testcase_29 | AC | 10 ms
6,784 KB |
testcase_30 | AC | 10 ms
6,784 KB |
testcase_31 | AC | 10 ms
6,784 KB |
testcase_32 | AC | 9 ms
6,784 KB |
testcase_33 | AC | 10 ms
6,784 KB |
ソースコード
#![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(unused_variables)] #![allow(unused_mut)] #![allow(non_snake_case)] // use proconio::input; use std::io::{Read, Write}; use std::mem::swap; use std::f64::consts::PI; use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque}; //---------------------------------------------------------------------------- fn read<T: std::str::FromStr>() -> T { let stdin = std::io::stdin(); let stdin = stdin.lock(); let token: String = stdin .bytes() .map(|c| c.expect("failed to read char") as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse().ok().expect("failed to parse token") } //---------------------------------------------------------------------------- mod scanner { use std::str::FromStr; pub struct Scanner<'a> { it: std::str::SplitWhitespace<'a>, } impl<'a> Scanner<'a> { pub fn new(s: &'a String) -> Scanner<'a> { Scanner { it: s.split_whitespace(), } } pub fn next<T: FromStr>(&mut self) -> T { self.it.next().unwrap().parse::<T>().ok().unwrap() } pub fn next_bytes(&mut self) -> Vec<u8> { self.it.next().unwrap().bytes().collect() } pub fn next_chars(&mut self) -> Vec<char> { self.it.next().unwrap().chars().collect() } pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.next()).collect() } } } //---------------------------------------------------------------------------- macro_rules! chmin { ($base:expr, $($cmps:expr),+ $(,)*) => {{ let cmp_min = min!($($cmps),+); if $base > cmp_min { $base = cmp_min; true } else { false } }}; } macro_rules! chmax { ($base:expr, $($cmps:expr),+ $(,)*) => {{ let cmp_max = max!($($cmps),+); if $base < cmp_max { $base = cmp_max; true } else { false } }}; } macro_rules! min { ($a:expr $(,)*) => {{ $a }}; ($a:expr, $b:expr $(,)*) => {{ std::cmp::min($a, $b) }}; ($a:expr, $($rest:expr),+ $(,)*) => {{ std::cmp::min($a, min!($($rest),+)) }}; } macro_rules! max { ($a:expr $(,)*) => {{ $a }}; ($a:expr, $b:expr $(,)*) => {{ std::cmp::max($a, $b) }}; ($a:expr, $($rest:expr),+ $(,)*) => {{ std::cmp::max($a, max!($($rest),+)) }}; } //---------------------------------------------------------------------------- const MOD: i64 = 998_244_353; // const MOD: i64 = 1_000_000_007; #[derive(Copy, Clone, PartialEq, Eq)] pub struct Mint { val: i64, } impl Mint { pub fn new(n: i64) -> Self { let mut new_val = n % MOD + MOD; if new_val >= MOD { new_val -= MOD; } Self { val: new_val } } pub fn pow(&self, n: i64) -> Self { if n == 0 { Self { val: 1 } } else { let mut ret = self.pow(n >> 1); ret *= ret; if (n & 1) != 0 { ret *= *self; } ret } } pub fn inv(&self) -> Self { self.pow(MOD - 2) } } impl std::fmt::Display for Mint { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}", self.val) } } impl std::fmt::Debug for Mint { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}", self.val) } } impl std::ops::Add for Mint { type Output = Self; fn add(self, other: Self) -> Self::Output { let mut new_val = self.val + other.val; if new_val >= MOD { new_val -= MOD; } Self { val: new_val } } } impl std::ops::Sub for Mint { type Output = Self; fn sub(self, other: Self) -> Self::Output { let mut new_val = self.val + MOD - other.val; if new_val >= MOD { new_val -= MOD; } Self { val: new_val } } } impl std::ops::Mul for Mint { type Output = Self; fn mul(self, other: Self) -> Self::Output { Self { val: (self.val * other.val) % MOD, } } } impl std::ops::Div for Mint { type Output = Self; fn div(self, other: Self) -> Self::Output { if other.val == 0 { panic!("0 division occured."); } self * other.inv() } } impl std::ops::AddAssign for Mint { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl std::ops::SubAssign for Mint { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl std::ops::MulAssign for Mint { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl std::ops::DivAssign for Mint { fn div_assign(&mut self, other: Self) { *self = *self / other; } } //---------------------------------------------------------------------------- pub struct MintComb { fact: Vec<Mint>, ifact: Vec<Mint>, } impl MintComb { pub fn new(n: i64) -> Self { let mut obj = Self { fact: vec![Mint::new(1); n as usize + 1], ifact: vec![Mint::new(1); n as usize + 1], }; assert!(n < MOD); obj.fact[0] = Mint::new(1); for i in 1..=n as usize { obj.fact[i] = obj.fact[i - 1] * Mint::new(i as i64); } obj.ifact[n as usize] = obj.fact[n as usize].inv(); for i in (1..=n as usize).rev() { obj.ifact[i - 1] = obj.ifact[i] * Mint::new(i as i64); } obj } pub fn permutation(&self, n: i64, k: i64) -> Mint { assert!(n >= 0); if k < 0 || n < k { Mint::new(0) } else { self.fact[n as usize] * self.ifact[k as usize] } } pub fn combination(&self, n: i64, k: i64) -> Mint { assert!(n >= 0); if k < 0 || n < k { Mint::new(0) } else { self.fact[n as usize] * self.ifact[k as usize] * self.ifact[(n - k) as usize] } } } //---------------------------------------------------------------------------- // 有理数(分数) #[derive(PartialEq, Debug, Copy, Clone, Eq, PartialOrd, Ord)] struct Ratio { numerator: i64, // 分子 denominator: i64, // 分母 } // ユークリッドの互除法 fn gcd(a: i64, b: i64) -> i64 { if b == 0 { a } else { gcd(b, a % b) } } impl std::fmt::Display for Ratio { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { if self.denominator == 1 { write!(f, "{}", self.numerator) } else { write!(f, "{}/{}", self.numerator, self.denominator) } } } impl Ratio { fn new(p: i64, q: i64) -> Ratio { if q == 0 { panic!("Ratio: divide by zero"); } let g = gcd(p.abs(), q.abs()); let s = if q < 0 { -1 } else { 1 }; Ratio { numerator: s * p / g, denominator: s * q / g, } } fn from_integer(n: i64) -> Ratio { Ratio { numerator: n, denominator: 1, } } fn as_int(&self) -> i64 { self.numerator / self.denominator } fn as_float(&self) -> f64 { self.numerator as f64 / self.denominator as f64 } fn numer(&self) -> i64 { self.numerator } fn denom(&self) -> i64 { self.denominator } fn is_integer(&self) -> bool { self.denominator == 1 } } impl std::ops::Add for Ratio { type Output = Ratio; fn add(self, other: Ratio) -> Ratio { let p = self.numerator * other.denominator + other.numerator * self.denominator; let q = self.denominator * other.denominator; Ratio::new(p, q) } } impl std::ops::Sub for Ratio { type Output = Ratio; fn sub(self, other: Ratio) -> Ratio { let p = self.numerator * other.denominator - other.numerator * self.denominator; let q = self.denominator * other.denominator; Ratio::new(p, q) } } impl std::ops::Mul for Ratio { type Output = Ratio; fn mul(self, other: Ratio) -> Ratio { let p = self.numerator * other.numerator; let q = self.denominator * other.denominator; Ratio::new(p, q) } } impl std::ops::Div for Ratio { type Output = Ratio; fn div(self, other: Ratio) -> Ratio { let p = self.numerator * other.denominator; let q = self.denominator * other.numerator; Ratio::new(p, q) } } //---------------------------------------------------------------------------- pub trait BinarySearch<T> { fn lower_bound(&self, x: &T) -> usize; fn upper_bound(&self, x: &T) -> usize; } impl<T: Ord> BinarySearch<T> for [T] { fn lower_bound(&self, x: &T) -> usize { let mut low = 0; let mut high = self.len(); while low != high { let mid = (low + high) / 2; match self[mid].cmp(x) { std::cmp::Ordering::Less => { low = mid + 1; } std::cmp::Ordering::Equal | std::cmp::Ordering::Greater => { high = mid; } } } low } fn upper_bound(&self, x: &T) -> usize { let mut low = 0; let mut high = self.len(); while low != high { let mid = (low + high) / 2; match self[mid].cmp(x) { std::cmp::Ordering::Less | std::cmp::Ordering::Equal => { low = mid + 1; } std::cmp::Ordering::Greater => { high = mid; } } } low } } //---------------------------------------------------------------------------- pub trait LexicalPermutation { /// Return `true` if the slice was permuted, `false` if it is already /// at the last ordered permutation. fn next_permutation(&mut self) -> bool; /// Return `true` if the slice was permuted, `false` if it is already /// at the first ordered permutation. fn prev_permutation(&mut self) -> bool; } impl<T> LexicalPermutation for [T] where T: Ord, { /// Original author in Rust: Thomas Backman <serenity@exscape.org> fn next_permutation(&mut self) -> bool { // These cases only have 1 permutation each, so we can't do anything. if self.len() < 2 { return false; } // Step 1: Identify the longest, rightmost weakly decreasing part of the vector let mut i = self.len() - 1; while i > 0 && self[i - 1] >= self[i] { i -= 1; } // If that is the entire vector, this is the last-ordered permutation. if i == 0 { return false; } // Step 2: Find the rightmost element larger than the pivot (i-1) let mut j = self.len() - 1; while j >= i && self[j] <= self[i - 1] { j -= 1; } // Step 3: Swap that element with the pivot self.swap(j, i - 1); // Step 4: Reverse the (previously) weakly decreasing part self[i..].reverse(); true } fn prev_permutation(&mut self) -> bool { // These cases only have 1 permutation each, so we can't do anything. if self.len() < 2 { return false; } // Step 1: Identify the longest, rightmost weakly increasing part of the vector let mut i = self.len() - 1; while i > 0 && self[i - 1] <= self[i] { i -= 1; } // If that is the entire vector, this is the first-ordered permutation. if i == 0 { return false; } // Step 2: Reverse the weakly increasing part self[i..].reverse(); // Step 3: Find the rightmost element equal to or bigger than the pivot (i-1) let mut j = self.len() - 1; while j >= i && self[j - 1] < self[i - 1] { j -= 1; } // Step 4: Swap that element with the pivot self.swap(i - 1, j); true } } //---------------------------------------------------------------------------- // Binary Indexed Tree(BIT, Fenwick Tree) #[derive(Clone)] struct FenwickTree { n: usize, data: Vec<i64>, } impl FenwickTree { fn new(n: usize) -> FenwickTree { FenwickTree { n: n, data: vec![0; n + 1], } } // --- sum --- fn add(&mut self, i: usize, x: i64) { let mut i = i + 1; while i <= self.n { self.data[i] += x; i += i & i.wrapping_neg(); } } fn sum(&self, i: usize) -> i64 { let mut i = i + 1; let mut s = 0; while i > 0 { s += self.data[i]; i -= i & i.wrapping_neg(); } s } // --- max --- fn update(&mut self, i: usize, x: i64) { let mut i = i + 1; while i <= self.n { self.data[i] = self.data[i].max(x); i += i & i.wrapping_neg(); } } fn max(&self, i: usize) -> i64 { let mut i = i + 1; let mut s = 0; while i > 0 { s = s.max(self.data[i]); i -= i & i.wrapping_neg(); } s } } //---------------------------------------------------------------------------- struct UnionFind { n: usize, parent: Vec<i64>, } impl UnionFind { fn new(n: usize) -> Self { Self { n, parent: vec![-1; n + 1], } } fn root(&mut self, a: usize) -> usize { if self.parent[a] < 0 { return a; } self.parent[a] = self.root(self.parent[a] as usize) as i64; return self.parent[a] as usize; } fn size(&mut self, a: usize) -> usize { let r = self.root(a); return -self.parent[r] as usize; } fn connect(&mut self, a: usize, b: usize) -> bool { let a = self.root(a); let b = self.root(b); if a == b { return false; } if self.size(a) > self.size(b) { self.parent[a] += self.parent[b]; self.parent[b] = a as i64; } else { self.parent[b] += self.parent[a]; self.parent[a] = b as i64; } return true; } } //---------------------------------------------------------------------------- macro_rules! printvec { ($vec:expr) => {{ print!( "{}", $vec.iter() .map(|&x| x.to_string()) .collect::<Vec<_>>() .join(" ") ); }}; } macro_rules! printvecln { ($vec:expr) => {{ printvec!($vec); println!(); }}; } //---------------------------------------------------------------------------- fn main() { let mut solver = Solver::new(); solver.run(); } //---------------------------------------------------------------------------- const INF: i64 = 2222222222222222222; //---------------------------------------------------------------------------- #[derive(Default)] struct Solver { } impl Solver { pub fn new() -> Self { Self { } } pub fn run(&mut self) { let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut sc = scanner::Scanner::new(&s); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); self.solve(&mut sc, &mut out); } fn solve<W: std::io::Write>(&mut self, sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) { let N: usize = sc.next(); let S: String = sc.next(); let T: String = sc.next(); let S = S.as_bytes(); let T = T.as_bytes(); let mut cnt = 0; for i in 0..N { if S[i] != T[i] { cnt += 1; } } let S: Vec<u8> = if cnt % 2 != 0 { S.iter().rev().map(|x| *x).collect() } else { S.iter().map(|x| *x).collect() }; let mut ans = 0; for i in 0..N { if S[i] != T[i] { ans += 1; } } writeln!(out, "{}", ans).ok(); } }