結果
問題 | No.2215 Slide Subset Sum |
ユーザー |
|
提出日時 | 2023-02-10 22:53:04 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 470 ms / 3,000 ms |
コード長 | 25,286 bytes |
コンパイル時間 | 2,450 ms |
コンパイル使用メモリ | 208,324 KB |
最終ジャッジ日時 | 2025-02-10 13:22:44 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 45 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < (n); i++)#define per(i, n) for (int i = (n)-1; i >= 0; i--)#define rep2(i, l, r) for (int i = (l); i < (r); i++)#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>using minheap = priority_queue<T, vector<T>, greater<T>>;template <typename T>using maxheap = priority_queue<T>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;const int inf = (1 << 30) - 1;const ll INF = (1LL << 60) - 1;// const int MOD = 1000000007;const int MOD = 998244353;template <int mod>struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int &operator+=(const Mod_Int &p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int &operator-=(const Mod_Int &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int &operator*=(const Mod_Int &p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int &operator/=(const Mod_Int &p) {*this *= p.inverse();return *this;}Mod_Int &operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int &operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int &p) const { return x == p.x; }bool operator!=(const Mod_Int &p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }friend istream &operator>>(istream &is, Mod_Int &p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};using mint = Mod_Int<MOD>;template <typename T>struct Number_Theoretic_Transform {static int max_base;static T root;static vector<T> r, ir;Number_Theoretic_Transform() {}static void init() {if (!r.empty()) return;int mod = T::get_mod();int tmp = mod - 1;root = 2;while (root.pow(tmp >> 1) == 1) root++;max_base = 0;while (tmp % 2 == 0) tmp >>= 1, max_base++;r.resize(max_base), ir.resize(max_base);for (int i = 0; i < max_base; i++) {r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根ir[i] = r[i].inverse(); // ir[i] := 1/r[i]}}static void ntt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = n; k >>= 1;) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = w * a[j];a[i] = x + y, a[j] = x - y;}w *= r[__builtin_ctz(++t)];}}}static void intt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = 1; k < n; k <<= 1) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = a[j];a[i] = x + y, a[j] = w * (x - y);}w *= ir[__builtin_ctz(++t)];}}T inv = T(n).inverse();for (auto &e : a) e *= inv;}static vector<T> convolve(vector<T> a, vector<T> b) {if (a.empty() || b.empty()) return {};int k = (int)a.size() + (int)b.size() - 1, n = 1;while (n < k) n <<= 1;a.resize(n), b.resize(n);ntt(a), ntt(b);for (int i = 0; i < n; i++) a[i] *= b[i];intt(a), a.resize(k);return a;}};template <typename T>int Number_Theoretic_Transform<T>::max_base = 0;template <typename T>T Number_Theoretic_Transform<T>::root = T();template <typename T>vector<T> Number_Theoretic_Transform<T>::r = vector<T>();template <typename T>vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();using NTT = Number_Theoretic_Transform<mint>;template <typename T>struct Combination {static vector<T> _fac, _ifac;Combination() {}static void init(int n) {_fac.resize(n + 1), _ifac.resize(n + 1);_fac[0] = 1;for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i;_ifac[n] = _fac[n].inverse();for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i;}static T fac(int k) { return _fac[k]; }static T ifac(int k) { return _ifac[k]; }static T inv(int k) { return fac(k - 1) * ifac(k); }static T P(int n, int k) {if (k < 0 || n < k) return 0;return fac(n) * ifac(n - k);}static T C(int n, int k) {if (k < 0 || n < k) return 0;return fac(n) * ifac(n - k) * ifac(k);}// k 個の区別できない玉を n 個の区別できる箱に入れる場合の数static T H(int n, int k) {if (n < 0 || k < 0) return 0;return k == 0 ? 1 : C(n + k - 1, k);}// n 個の区別できる玉を、k 個の区別しない箱に、各箱に 1 個以上玉が入るように入れる場合の数static T second_stirling_number(int n, int k) {T ret = 0;for (int i = 0; i <= k; i++) {T tmp = C(k, i) * T(i).pow(n);ret += ((k - i) & 1) ? -tmp : tmp;}return ret * ifac(k);}// n 個の区別できる玉を、k 個の区別しない箱に入れる場合の数static T bell_number(int n, int k) {if (n == 0) return 1;k = min(k, n);vector<T> pref(k + 1);pref[0] = 1;for (int i = 1; i <= k; i++) {if (i & 1) {pref[i] = pref[i - 1] - ifac(i);} else {pref[i] = pref[i - 1] + ifac(i);}}T ret = 0;for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i];return ret;}};template <typename T>vector<T> Combination<T>::_fac = vector<T>();template <typename T>vector<T> Combination<T>::_ifac = vector<T>();using comb = Combination<mint>;template <typename T>vector<T> divisors(const T &n) {vector<T> ret;for (T i = 1; i * i <= n; i++) {if (n % i == 0) {ret.push_back(i);if (i * i != n) ret.push_back(n / i);}}sort(begin(ret), end(ret));return ret;}template <typename T>vector<pair<T, int>> prime_factor(T n) {vector<pair<T, int>> ret;for (T i = 2; i * i <= n; i++) {int cnt = 0;while (n % i == 0) cnt++, n /= i;if (cnt > 0) ret.emplace_back(i, cnt);}if (n > 1) ret.emplace_back(n, 1);return ret;}template <typename T>bool is_prime(const T &n) {if (n == 1) return false;for (T i = 2; i * i <= n; i++) {if (n % i == 0) return false;}return true;}// 1,2,...,n のうち k と互いに素である自然数の個数template <typename T>T coprime(T n, T k) {vector<pair<T, int>> ps = prime_factor(k);int m = ps.size();T ret = 0;for (int i = 0; i < (1 << m); i++) {T prd = 1;for (int j = 0; j < m; j++) {if ((i >> j) & 1) prd *= ps[j].first;}ret += (__builtin_parity(i) ? -1 : 1) * (n / prd);}return ret;}vector<bool> Eratosthenes(const int &n) {vector<bool> ret(n + 1, true);if (n >= 0) ret[0] = false;if (n >= 1) ret[1] = false;for (int i = 2; i * i <= n; i++) {if (!ret[i]) continue;for (int j = i + i; j <= n; j += i) ret[j] = false;}return ret;}vector<int> Eratosthenes2(const int &n) {vector<int> ret(n + 1);iota(begin(ret), end(ret), 0);if (n >= 0) ret[0] = -1;if (n >= 1) ret[1] = -1;for (int i = 2; i * i <= n; i++) {if (ret[i] < i) continue;for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i);}return ret;}template <typename Monoid>struct Segment_Tree {using F = function<Monoid(Monoid, Monoid)>;int n;vector<Monoid> seg;const F f;const Monoid e1;// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = aSegment_Tree(const vector<Monoid> &v, const F &f, const Monoid &e1) : f(f), e1(e1) {int m = v.size();n = 1;while (n < m) n <<= 1;seg.assign(2 * n, e1);copy(begin(v), end(v), seg.begin() + n);for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);}Segment_Tree(int m, const Monoid &x, const F &f, const Monoid &e1) : Segment_Tree(vector<Monoid>(m, x), f, e1) {}void change(int i, const Monoid &x, bool update = true) {if (update) {seg[i + n] = x;} else {seg[i + n] = f(seg[i + n], x);}i += n;while (i >>= 1) seg[i] = f(seg[2 * i], seg[2 * i + 1]);}Monoid query(int l, int r) const {l = max(l, 0), r = min(r, n);Monoid L = e1, R = e1;l += n, r += n;while (l < r) {if (l & 1) L = f(L, seg[l++]);if (r & 1) R = f(seg[--r], R);l >>= 1, r >>= 1;}return f(L, R);}Monoid operator[](int i) const { return seg[n + i]; }template <typename C>int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, int type) const {while (i < n) {Monoid nxt = type ? f(seg[2 * i + type], M) : f(M, seg[2 * i + type]);if (check(nxt, x)) {i = 2 * i + type;} else {M = nxt;i = 2 * i + (type ^ 1);}}return i - n;}// check((区間 [l,r] での演算結果), x) を満たす最小の r (存在しなければ n 以上の値)template <typename C>int find_first(int l, const C &check, const Monoid &x) const {Monoid L = e1;int a = l + n, b = n + n;while (a < b) {if (a & 1) {Monoid nxt = f(L, seg[a]);if (check(nxt, x)) return find_subtree(a, check, x, L, 0);L = nxt, a++;}a >>= 1, b >>= 1;}return n;}// check((区間 [l,r) での演算結果), x) を満たす最大の l (存在しなければ -1)template <typename C>int find_last(int r, const C &check, const Monoid &x) const {Monoid R = e1;int a = n, b = r + n;while (a < b) {if ((b & 1) || a == 1) {Monoid nxt = f(seg[--b], R);if (check(nxt, x)) return find_subtree(b, check, x, R, 1);R = nxt;}a >>= 1, b >>= 1;}return -1;}};struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <typename T>struct Sparse_Table {using F = function<T(T, T)>;const int n;int height;vector<vector<T>> st; // st[i][j] := 区間 [j,j+2^i) での演算の結果vector<int> lookup;const F f;const T e;// f(f(a,b),c) = f(a,f(b,c)), f(e,a) = f(a,e) = a, f(a,a) = a// 例えば min や gcd はこれらを満たすが、+ や * は満たさないSparse_Table(const vector<T> &table, const F &f, const T &e) : n((int)table.size()), f(f), e(e) {height = 0;while (n >> height) height++;st.assign(height, vector<T>(n));for (int i = 0; i < n; i++) st[0][i] = table[i];for (int j = 0; j < height - 1; j++) {for (int i = 0; i < n; i++) {if (i + (1 << j) < n) {st[j + 1][i] = f(st[j][i], st[j][i + (1 << j)]);} else {st[j + 1][i] = st[j][i];}}}lookup.assign(n + 1, -1);for (int i = 1; i <= n; i++) lookup[i] = lookup[i / 2] + 1;}T query(int l, int r) const {if (l >= r) return e;int k = lookup[r - l];return f(st[k][l], st[k][r - (1 << k)]);}T operator[](int i) const { return st[0][i]; }};template <bool directed = false>struct Low_Link {struct edge {int to, id;edge(int to, int id) : to(to), id(id) {}};vector<vector<edge>> es;vector<int> ord, low;vector<bool> used;vector<int> articulation, bridge;const int n;int m;Low_Link(int n) : es(n), ord(n), low(n), used(n), n(n), m(0) {}void add_edge(int from, int to) {es[from].emplace_back(to, m);if (!directed) es[to].emplace_back(from, m);m++;}int _dfs(int now, int pre, int k) {used[now] = true;ord[now] = low[now] = k++;bool is_articulation = false;int cnt = 0;for (auto &e : es[now]) {if (e.id == pre) continue;if (!used[e.to]) {cnt++;k = _dfs(e.to, e.id, k);low[now] = min(low[now], low[e.to]);if (pre != -1 && low[e.to] >= ord[now]) is_articulation = true;if (ord[now] < low[e.to]) bridge.push_back(e.id);} else {low[now] = min(low[now], ord[e.to]);}}if (pre == -1 && cnt >= 2) is_articulation = true;if (is_articulation) articulation.push_back(now);return k;}void build() {fill(begin(used), end(used), false);int k = 0;for (int i = 0; i < n; i++) {if (!used[i]) k = _dfs(i, -1, k);}}};template <bool directed = false>struct Biconnected_Components : Low_Link<directed> {using L = Low_Link<directed>;vector<int> comp;vector<bool> used;const int n;Biconnected_Components(int n) : L(n), used(n), n(n) {}int _dfs(int now, int pre, int top, int k) {used[now] = true;for (auto &e : this->es[now]) {if (comp[e.id] != -1) continue;if (this->ord[e.to] < this->ord[now]) {comp[e.id] = top;} else if (this->low[e.to] >= this->ord[now]) {comp[e.id] = k;k = _dfs(e.to, now, k, k + 1);} else {comp[e.id] = top;k = _dfs(e.to, now, top, k);}}return k;}int decompose() {this->build();comp.assign(this->m, -1);fill(begin(used), end(used), false);int k = 0;for (int i = 0; i < n; i++) {if (!used[i]) k = _dfs(i, -1, -1, k);}return k;}};template <typename T>void fast_zeta_transform(vector<T> &a, bool upper) {int n = a.size();assert((n & (n - 1)) == 0);for (int i = 1; i < n; i <<= 1) {for (int j = 0; j < n; j++) {if (!(j & i)) {if (upper) {a[j] += a[j | i];} else {a[j | i] += a[j];}}}}}template <typename T>void fast_mobius_transform(vector<T> &a, bool upper) {int n = a.size();assert((n & (n - 1)) == 0);for (int i = 1; i < n; i <<= 1) {for (int j = 0; j < n; j++) {if (!(j & i)) {if (upper) {a[j] -= a[j | i];} else {a[j | i] -= a[j];}}}}}template <typename T>void fast_hadamard_transform(vector<T> &a, bool inverse = false) {int n = a.size();assert((n & (n - 1)) == 0);for (int i = 1; i < n; i <<= 1) {for (int j = 0; j < n; j++) {if (!(j & i)) {T x = a[j], y = a[j | i];a[j] = x + y, a[j | i] = x - y;}}}if (inverse) {T inv = T(1) / T(n);for (auto &e : a) e *= inv;}}template <typename T>vector<T> bitwise_and_convolve(vector<T> a, vector<T> b) {int n = a.size();assert(b.size() == n && (n & (n - 1)) == 0);fast_zeta_transform(a, true), fast_zeta_transform(b, true);for (int i = 0; i < n; i++) a[i] *= b[i];fast_mobius_transform(a, true);return a;}template <typename T>vector<T> bitwise_or_convolve(vector<T> a, vector<T> b) {int n = a.size();assert(b.size() == n && (n & (n - 1)) == 0);fast_zeta_transform(a, false), fast_zeta_transform(b, false);for (int i = 0; i < n; i++) a[i] *= b[i];fast_mobius_transform(a, false);return a;}template <typename T>vector<T> bitwise_xor_convolve(vector<T> a, vector<T> b) {int n = a.size();assert(b.size() == n && (n & (n - 1)) == 0);fast_hadamard_transform(a), fast_hadamard_transform(b);for (int i = 0; i < n; i++) a[i] *= b[i];fast_hadamard_transform(a, true);return a;}template <typename T>vector<T> subset_convolve(const vector<T> &a, const vector<T> &b) {int n = a.size();assert(b.size() == n && (n & (n - 1)) == 0);int k = __builtin_ctz(n);vector<vector<T>> A(k + 1, vector<T>(n, 0)), B(k + 1, vector<T>(n, 0)), C(k + 1, vector<T>(n, 0));for (int i = 0; i < n; i++) {int t = __builtin_popcount(i);A[t][i] = a[i], B[t][i] = b[i];}for (int i = 0; i <= k; i++) fast_zeta_transform(A[i], false), fast_zeta_transform(B[i], false);for (int i = 0; i <= k; i++) {for (int j = 0; j <= k - i; j++) {for (int l = 0; l < n; l++) C[i + j][l] += A[i][l] * B[j][l];}}for (int i = 0; i <= k; i++) fast_mobius_transform(C[i], false);vector<T> c(n);for (int i = 0; i < n; i++) c[i] = C[__builtin_popcount(i)][i];return c;}template <typename T>void divisors_zeta_transform(vector<T> &a, bool upper) {int n = a.size();vector<bool> is_prime(n, true);if (!upper) {for (int i = 1; i < n; i++) a[0] += a[i];}for (int i = 2; i < n; i++) {if (!is_prime[i]) continue;if (upper) {for (int j = (n - 1) / i; j > 0; j--) {is_prime[j * i] = false;a[j] += a[j * i];}} else {for (int j = 1; j * i < n; j++) {is_prime[j * i] = false;a[j * i] += a[j];}}}if (upper) {for (int i = 1; i < n; i++) a[i] += a[0];}}template <typename T>void divisors_mobius_transform(vector<T> &a, bool upper) {int n = a.size();vector<bool> is_prime(n, true);if (upper) {for (int i = 1; i < n; i++) a[i] -= a[0];}for (int i = 2; i < n; i++) {if (!is_prime[i]) continue;if (upper) {for (int j = 1; j * i < n; j++) {is_prime[j * i] = false;a[j] -= a[j * i];}} else {for (int j = (n - 1) / i; j > 0; j--) {is_prime[j * i] = false;a[j * i] -= a[j];}}}if (!upper) {for (int i = 1; i < n; i++) a[0] -= a[i];}}template <bool directed = false>struct Graph {struct edge {int to, id;edge(int to, int id) : to(to), id(id) {}};vector<vector<edge>> es;const int n;int m;Graph(int n) : es(n), n(n), m(0) {}void add_edge(int from, int to) {es[from].emplace_back(to, m);if (!directed) es[to].emplace_back(from, m);m++;}pair<mint, mint> dfs(int now, int pre = -1) {mint a = 1, b = 1;each(e, es[now]) {if (e.to == pre) continue;auto [c, d] = dfs(e.to, now);mint na = 0, nb = 0;na += a * c;nb += a * d;na += a * d;nb += b * c;nb += b * d;swap(a, na), swap(b, nb);}return make_pair(a, b);}void solve() {auto [a, b] = dfs(0);cout << b << '\n';}};ll solve() {ll A, B, C, D;cin >> A >> B >> C >> D;if (C > D) swap(C, D), swap(A, B);if (A > B) {if (B <= D) return C + 1 + D - B;return C + 1 + D + 1;}if (B <= D) {if (A <= C) return D - B + C - A;return D - B + C + 1;}if (A == 1) return C + D + 3;return C + D + 2;}int main() {int N, M, K;cin >> N >> M >> K;vector<int> a(N);rep(i, N) cin >> a[i];rep(i, M + 5) a.eb(0);vector<mint> ans(N + M + 5, 0);for (int s = 0; s <= N - M; s += M + 1) {vector<vector<mint>> L(M + 1, vector<mint>(K, 0)), R = L;L[0][0] = 1, R[0][0] = 1;rep(i, M) {rep(j, K) {L[i + 1][j] += L[i][j];R[i + 1][j] += R[i][j];L[i + 1][(j + a[s + M - 1 - i]) % K] += L[i][j];R[i + 1][(j + a[s + M + i]) % K] += R[i][j];}}rep2(t, 0, M + 1) {rep(i, K) {int j = (i == 0 ? 0 : K - i);ans[s + t] += L[M - t][i] * R[t][j];}}}rep(i, N - M + 1) cout << ans[i] - 1 << '\n';}