結果

問題 No.2215 Slide Subset Sum
ユーザー 👑 emthrmemthrm
提出日時 2023-02-10 23:05:19
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 146 ms / 3,000 ms
コード長 6,454 bytes
コンパイル時間 2,837 ms
コンパイル使用メモリ 256,532 KB
実行使用メモリ 90,028 KB
最終ジャッジ日時 2024-07-07 17:07:23
合計ジャッジ時間 8,524 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 45
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// #if __cplusplus >= 201703L
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
// #else
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
// #endif // __cplusplus >= 201703L
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
const auto memoize = [prev, n]() -> void {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
};
#if __cplusplus >= 201703L
if constexpr (MEMOIZES) {
memoize();
return inverse[n];
}
#else
if (MEMOIZES) {
memoize();
return inverse[n];
}
#endif // __cplusplus >= 201703L
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if (static_cast<int>(v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if (static_cast<int>(v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (static_cast<int>(++v) == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
int main() {
int n, m, k; cin >> n >> m >> k;
vector add(k, vector(k, 0));
REP(i, k) REP(j, k) add[i][j] = (i + j) % k;
vector<int> a(n); REP(i, n) cin >> a[i];
vector dpl(m, vector(k, ModInt(0)));
vector<ModInt> dpr1(k, 0), dpr2(k, 0);
for (int i = 0; i + m <= n; i += m) {
REP(x, m) fill(ALL(dpl[x]), 0);
dpl[m - 1][0] = 1;
++dpl[m - 1][a[i + m - 1]];
for (int x = m - 1; x > 0; --x) {
copy(ALL(dpl[x]), dpl[x - 1].begin());
REP(y, k) dpl[x - 1][add[y][a[i + x - 1]]] += dpl[x][y];
}
cout << dpl[0][0] - 1 << '\n';
// REP(x, m) REP(y, k) cout << dpl[x][y] << " \n"[y + 1 == k];
fill(ALL(dpr1), 0);
dpr1[0] = 1;
for (int j = 0; j < m - 1 && i + m + j < n; ++j) {
copy(ALL(dpr1), dpr2.begin());
REP(x, k) dpr2[add[x][a[i + m + j]]] += dpr1[x];
dpr1.swap(dpr2);
ModInt ans = dpl[j + 1][0] * dpr1[0];
FOR(y, 1, k) ans += dpl[j + 1][y] * dpr1[k - y];
cout << ans - 1 << '\n';
// REP(x, k) cout << dpr1[x] << " \n"[x + 1 == k];
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0