結果
| 問題 |
No.2211 Frequency Table of GCD
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-10 23:16:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 140 ms / 2,000 ms |
| コード長 | 4,083 bytes |
| コンパイル時間 | 1,162 ms |
| コンパイル使用メモリ | 109,372 KB |
| 最終ジャッジ日時 | 2025-02-10 13:38:14 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:117:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
117 | scanf("%d %d", &N, &M);
| ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:119:37: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
119 | for(int i = 0; i < N; ++i) scanf("%d", A + i);
| ~~~~~^~~~~~~~~~~~~
ソースコード
#include<cstdio>
#include<cassert>
#include<vector>
#include<iostream>
#include<string>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<functional>
#include<utility>
#include<cstring>
#include<numeric>
#include<algorithm>
#include<atcoder/math>
#include<atcoder/modint>
//#include<ext/pb_ds/assoc_container.hpp>
//#include<ext/pb_ds/tree_policy.hpp>
//using namespace __gnu_pbds;
using namespace std;
using namespace atcoder;
using ll = long long;
using ull = unsigned long long;
using Mint = modint998244353;
using mint = modint;
#define rep(i, n) for (int i = 0; i < (int)(n); ++i)
#define rrep(i, n) for (int i = (int)(n)-1; i >= 0; --i)
#define rep2(i, a, b) for (int i = (int)a; i < (int)(b); ++i)
#define rrep2(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); --i)
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
constexpr int dx[] = {-1,0,1,0};
constexpr int dy[] = {0,-1,0,1};
constexpr int MAX_N = 100000;
//ダイクストラ法:makedijkstra
//エラトステネスの篩:makesieve
//テストケースが複数の場合:multest
struct Eratosthenes {
// テーブル
vector<bool> isprime;
// 整数 n を割り切る最小の素数
vector<int> minfactor;
// メビウス関数値
vector<int> mobius;
// コンストラクタで篩を回す
Eratosthenes(int N) : isprime(N+1, true),
minfactor(N+1, -1),
mobius(N+1, 1) {
// 1 は予めふるい落としておく
isprime[1] = false;
minfactor[1] = 1;
// 篩
for (int p = 2; p <= N; ++p) {
// すでに合成数であるものはスキップする
if (!isprime[p]) continue;
// p についての情報更新
minfactor[p] = p;
mobius[p] = -1;
// p 以外の p の倍数から素数ラベルを剥奪
for (int q = p * 2; q <= N; q += p) {
// q は合成数なのでふるい落とす
isprime[q] = false;
// q は p で割り切れる旨を更新
if (minfactor[q] == -1) minfactor[q] = p;
if ((q / p) % p == 0) mobius[q] = 0;
else mobius[q] = -mobius[q];
}
}
}
// 高速素因数分解、高速約数列挙は省略
vector<pair<int,int>> factorize(int n) {
vector<pair<int,int>> res;
while (n > 1) {
int p = minfactor[n];
int exp = 0;
// n で割り切れる限り割る
while (minfactor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
vector<int> divisors(int n) {
vector<int> res({1});
// n を素因数分解 (メンバ関数使用)
auto pf = factorize(n);
// 約数列挙
for (auto p : pf) {
int s = (int)res.size();
for (int i = 0; i < s; ++i) {
int v = 1;
for (int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
return res;
}
};
int main(){
//cin.tie(nullptr);
//std::ios_base::sync_with_stdio(false);
int N, M;
scanf("%d %d", &N, &M);
int A[N];
for(int i = 0; i < N; ++i) scanf("%d", A + i);
Eratosthenes sieve(200000);
int multiple[M+1];
memset(multiple, 0, sizeof(multiple));
rep(i, N){
auto div = sieve.divisors(A[i]);
for(auto d : div){
if(d > M) continue;
multiple[d]++;
}
}
Mint two[N+1];
two[0] = 1;
rep2(i, 1, N+1) two[i] = two[i-1]*2;
Mint answer[M+1];
rep2(i, 1, M+1) rep2(j, 1, M/i + 1) answer[i] += (two[multiple[i*j]] - 1)*sieve.mobius[j];
rep(i, M) printf("%u\n", answer[i+1].val());
return 0;
}