結果

問題 No.2209 Flip and Reverse
ユーザー OnjoujiTokiOnjoujiToki
提出日時 2023-02-11 01:52:30
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 46 ms / 2,000 ms
コード長 5,799 bytes
コンパイル時間 1,198 ms
コンパイル使用メモリ 126,804 KB
実行使用メモリ 7,188 KB
最終ジャッジ日時 2024-07-07 18:55:57
合計ジャッジ時間 3,307 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 40 ms
7,052 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 46 ms
7,176 KB
testcase_15 AC 45 ms
7,052 KB
testcase_16 AC 46 ms
7,060 KB
testcase_17 AC 46 ms
7,184 KB
testcase_18 AC 46 ms
7,056 KB
testcase_19 AC 45 ms
7,184 KB
testcase_20 AC 46 ms
7,184 KB
testcase_21 AC 45 ms
7,060 KB
testcase_22 AC 46 ms
7,056 KB
testcase_23 AC 45 ms
7,060 KB
testcase_24 AC 44 ms
7,060 KB
testcase_25 AC 44 ms
7,184 KB
testcase_26 AC 43 ms
7,184 KB
testcase_27 AC 45 ms
7,184 KB
testcase_28 AC 42 ms
7,056 KB
testcase_29 AC 43 ms
7,060 KB
testcase_30 AC 43 ms
7,056 KB
testcase_31 AC 43 ms
7,056 KB
testcase_32 AC 38 ms
7,184 KB
testcase_33 AC 38 ms
7,188 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* 💕💕💕💕💕
💗💗💗💗💗
  /)/)
( . .)
( づ💗

    💗💗💗  💗💗💗
  💗💗💗💗💗💗💗💗💗
  💗💗💗💗💗💗💗💗💗
    💗💗💗💗💗💗💗
      💗💗💗💗💗
        💗💗💗
          💗

*/

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>
template <int mod>
struct ModInt {
  int x;
  ModInt() : x(0) {}
  ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
  ModInt &operator+=(const ModInt &p) {
    if ((x += p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator-=(const ModInt &p) {
    if ((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator*=(const ModInt &p) {
    x = (int)(1LL * x * p.x % mod);
    return *this;
  }
  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ModInt &operator^=(long long p) {  // quick_pow here:3
    ModInt res = 1;
    for (; p; p >>= 1) {
      if (p & 1) res *= *this;
      *this *= *this;
    }
    return *this = res;
  }
  ModInt operator-() const { return ModInt(-x); }
  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
  ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
  bool operator==(const ModInt &p) const { return x == p.x; }
  bool operator!=(const ModInt &p) const { return x != p.x; }
  explicit operator int() const { return x; }  // added by QCFium
  ModInt operator=(const int p) {
    x = p;
    return ModInt(*this);
  }  // added by QCFium
  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      a -= t * b;
      std::swap(a, b);
      u -= t * v;
      std::swap(u, v);
    }
    return ModInt(u);
  }
  friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
    return os << p.x;
  }
  friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
    long long x;
    is >> x;
    a = ModInt<mod>(x);
    return (is);
  }
};
using mint = ModInt<1000000007>;
const int MOD = 1000000007;
struct MComb {
  std::vector<mint> fact;
  std::vector<mint> inversed;
  MComb(int n) {  // O(n+log(mod))
    fact = std::vector<mint>(n + 1, 1);
    for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);
    inversed = std::vector<mint>(n + 1);
    inversed[n] = fact[n] ^ (MOD - 2);
    for (int i = n - 1; i >= 0; i--)
      inversed[i] = inversed[i + 1] * mint(i + 1);
  }
  mint ncr(int n, int r) {
    if (n < r) return 0;
    return (fact[n] * inversed[r] * inversed[n - r]);
  }
  mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }
  mint nhr(int n, int r) {
    assert(n + r - 1 < (int)fact.size());
    return ncr(n + r - 1, r);
  }
};

mint ncr(int n, int r) {
  mint res = 1;
  for (int i = n - r + 1; i <= n; i++) res *= i;
  for (int i = 1; i <= r; i++) res /= i;
  return res;
}

/*
mint res = (mint(2) ^ n) - 1 - ncr(n, a) - ncr(n, b);
std::cout << res << std::endl;
*/

template <typename T>
struct DSU {
  std::vector<T> f, siz;
  DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
  T leader(T x) {
    while (x != f[x]) x = f[x] = f[f[x]];
    return x;
  }
  bool same(T x, T y) { return leader(x) == leader(y); }
  bool merge(T x, T y) {
    x = leader(x);
    y = leader(y);
    if (x == y) return false;
    siz[x] += siz[y];
    f[y] = x;
    return true;
  }
  T size(int x) { return siz[leader(x)]; }
};

template <typename T>
struct Dijkstra {
  using edge = std::pair<T, int>;  // weight & vertex id num
  const T INF = std::numeric_limits<T>::max() / 2;
  int n;
  std::vector<std::vector<edge>> edges;
  Dijkstra(int _n) : n(_n), edges(n) {}

  // Add a directed edge from u -> v;
  void add_edge(int u, int v, T weight) { edges[u].emplace_back(weight, v); }
  // return dist [0..n - 1] pred[0..n - 1]
  std::pair<std::vector<T>, std::vector<int>> shortest_paths(int s) {
    std::vector<T> dist(n, INF);
    std::vector<int> pred(n, -1);
    dist[s] = 0;
    std::priority_queue<edge, std::vector<edge>, std::greater<edge>> pq;
    pq.emplace(0, s);

    while (!pq.empty()) {
      auto [d, u] = pq.top();
      pq.pop();
      if (d == dist[u]) {
        for (auto [w, v] : edges[u]) {
          if (dist[v] > dist[u] + w) {
            dist[v] = dist[u] + w;
            pred[v] = u;
            pq.emplace(dist[v], v);
          }
        }
      }
    }
    return {dist, pred};
  }

  std::vector<int> get_path(int v, const std::vector<int> &pred) {
    std::vector<int> path = {v};
    while (pred[v] != -1) {
      path.push_back(pred[v]);
      v = pred[v];
    }

    reverse(path.begin(), path.end());
    return path;
  }
};

void solve() {
  int n;
  std::cin >> n;
  std::string s, t;
  std::cin >> s >> t;
  // even
  int ans = 1e9;
  int cnt = 0;
  for (int i = 0; i < n; i++) {
    if (s[i] != t[i]) {
      cnt += 1;
    }
  }
  if (cnt % 2 == 0) {
    ans = std::min(ans, cnt);
  }
  cnt = 0;
  std::reverse(t.begin(), t.end());
  for (int i = 0; i < n; i++) {
    if (s[i] != t[i]) {
      cnt += 1;
    }
  }
  if (cnt % 2 == 1) {
    ans = std::min(ans, cnt);
  }
  std::cout << ans << '\n';
}

int main() {
  int t = 1;
  // std::cout << std::boolalpha;
  // std::cin >> t;

  while (t--) solve();
  return 0;
}
0