結果
問題 | No.2215 Slide Subset Sum |
ユーザー | 👑 p-adic |
提出日時 | 2023-02-11 10:11:48 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 320 ms / 3,000 ms |
コード長 | 7,870 bytes |
コンパイル時間 | 3,932 ms |
コンパイル使用メモリ | 228,040 KB |
実行使用メモリ | 322,688 KB |
最終ジャッジ日時 | 2024-07-08 01:06:29 |
合計ジャッジ時間 | 11,425 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
5,248 KB |
testcase_01 | AC | 51 ms
5,376 KB |
testcase_02 | AC | 149 ms
5,376 KB |
testcase_03 | AC | 140 ms
5,376 KB |
testcase_04 | AC | 192 ms
9,600 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 282 ms
148,736 KB |
testcase_18 | AC | 274 ms
128,000 KB |
testcase_19 | AC | 237 ms
7,808 KB |
testcase_20 | AC | 249 ms
163,456 KB |
testcase_21 | AC | 265 ms
39,552 KB |
testcase_22 | AC | 255 ms
175,872 KB |
testcase_23 | AC | 320 ms
289,280 KB |
testcase_24 | AC | 312 ms
290,816 KB |
testcase_25 | AC | 296 ms
258,176 KB |
testcase_26 | AC | 278 ms
177,152 KB |
testcase_27 | AC | 10 ms
5,376 KB |
testcase_28 | AC | 15 ms
12,160 KB |
testcase_29 | AC | 17 ms
9,856 KB |
testcase_30 | AC | 76 ms
5,376 KB |
testcase_31 | AC | 111 ms
107,648 KB |
testcase_32 | AC | 23 ms
7,296 KB |
testcase_33 | AC | 172 ms
25,984 KB |
testcase_34 | AC | 131 ms
74,368 KB |
testcase_35 | AC | 21 ms
5,376 KB |
testcase_36 | AC | 58 ms
49,408 KB |
testcase_37 | AC | 310 ms
322,688 KB |
testcase_38 | AC | 30 ms
14,976 KB |
testcase_39 | AC | 51 ms
5,376 KB |
testcase_40 | AC | 39 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 309 ms
164,608 KB |
testcase_43 | AC | 33 ms
5,376 KB |
testcase_44 | AC | 33 ms
5,376 KB |
testcase_45 | AC | 290 ms
242,688 KB |
testcase_46 | AC | 287 ms
242,944 KB |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \ static ll ANSWER[LENGTH]; \ static ll ANSWER_INV[LENGTH]; \ static ll INVERSE[LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_I ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_I ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \ } \ } \ // 通常の二分探索(単調関数-目的値が一意実数解を持つ場合にそれを超えない最大の整数を返す) #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MAXIMUM; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ \ // 二進法の二分探索(単調関数-目的値が一意実数解を持つ場合にそれを超えない最大の整数を返す) #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \ } \ \ template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } inline CEXPR( ll , P , 998244353 ); int K = 1; void red( vector<ll>& f ) { int size = f.size(); while( size > K ){ size--; ll& f_curr = f[size - K]; if( ( f_curr += f[size] ) >= P ){ f_curr -= P; } f.pop_back(); } return; } void mul( vector<ll>& f , int& Ai ) { int size = f.size(); f.resize( size + Ai ); FOREQINV( i , size - 1 , 0 ){ ll& f_curr = f[i + Ai]; if( ( f_curr += f[i] ) >= P ){ f_curr -= P; } } red( f ); return; } ATT int main() { UNTIE; CIN( int , N ); CIN( int , M ); cin >> K; vector<int> A( M ); FOR( i , 0 , M ){ cin >> A[i]; } vector<vector<ll> > a( M ); a.back() = vector<ll>( 1 , 1 ); FOREQINV( i , M - 1 , 1 ){ mul( a[i-1] = a[i] , A[i] ); } vector<ll> temp( a[0] ); mul( temp , A[0] ); CEXPR( ll , P_minus , P - 1 ); ll answer = temp[0]; COUT( answer > 0 ? --answer : P_minus ); temp = vector<ll>( 1 , 1 ); int i = 0; N -= M; REPEAT( N ){ CIN( int , Ai ); A[i] = Ai; mul( temp , Ai ); vector<ll>& f = a[i]; int size_temp = temp.size(); int size_f = f.size(); ( answer = temp[0] * f[0] ) %= P; FOR( j , K - size_f + 1 , size_temp ){ ( answer += temp[j] * f[K - j] ) %= P; } COUT( answer > 0 ? --answer : P_minus ); if( ++i == M ){ a.back() = vector<ll>( 1 , 1 ); FOREQINV( i , M - 1 , 1 ){ mul( a[i-1] = a[i] , A[i] ); } temp = vector<ll>( 1 , 1 ); i = 0; } } QUIT; }