結果

問題 No.2231 Surprising Flash!
ユーザー akakimidoriakakimidori
提出日時 2023-02-16 01:59:24
言語 Rust
(1.77.0)
結果
WA  
実行時間 -
コード長 32,142 bytes
コンパイル時間 7,311 ms
コンパイル使用メモリ 183,764 KB
実行使用メモリ 48,720 KB
最終ジャッジ日時 2023-10-11 08:20:08
合計ジャッジ時間 19,390 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,368 KB
testcase_01 AC 3 ms
4,368 KB
testcase_02 AC 21 ms
4,372 KB
testcase_03 AC 351 ms
15,344 KB
testcase_04 AC 13 ms
4,372 KB
testcase_05 AC 25 ms
4,372 KB
testcase_06 WA -
testcase_07 AC 1 ms
4,372 KB
testcase_08 AC 3 ms
4,372 KB
testcase_09 AC 1 ms
4,372 KB
testcase_10 AC 4 ms
4,372 KB
testcase_11 AC 257 ms
39,264 KB
testcase_12 AC 293 ms
48,632 KB
testcase_13 AC 645 ms
48,720 KB
testcase_14 AC 327 ms
31,556 KB
testcase_15 AC 262 ms
39,248 KB
testcase_16 AC 197 ms
5,756 KB
testcase_17 AC 203 ms
7,872 KB
testcase_18 AC 539 ms
31,612 KB
testcase_19 AC 529 ms
31,500 KB
testcase_20 AC 532 ms
31,568 KB
testcase_21 AC 540 ms
31,632 KB
testcase_22 AC 542 ms
31,620 KB
testcase_23 AC 542 ms
31,676 KB
testcase_24 AC 558 ms
31,620 KB
testcase_25 AC 554 ms
31,616 KB
testcase_26 AC 552 ms
31,620 KB
testcase_27 AC 536 ms
31,596 KB
testcase_28 AC 520 ms
31,628 KB
testcase_29 AC 647 ms
37,204 KB
testcase_30 AC 650 ms
37,280 KB
testcase_31 AC 643 ms
37,272 KB
testcase_32 AC 660 ms
37,344 KB
testcase_33 AC 683 ms
37,296 KB
testcase_34 AC 286 ms
37,336 KB
testcase_35 AC 293 ms
37,272 KB
testcase_36 AC 296 ms
37,344 KB
testcase_37 AC 290 ms
37,288 KB
testcase_38 AC 287 ms
37,244 KB
testcase_39 AC 47 ms
4,368 KB
testcase_40 AC 35 ms
4,368 KB
testcase_41 AC 1 ms
4,368 KB
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: function `shuffle` is never used
   --> Main.rs:962:4
    |
962 | fn shuffle<T>(a: &mut [T]) {
    |    ^^^^^^^
    |
    = note: `#[warn(dead_code)]` on by default

warning: fields `sa` and `lcp` are never read
   --> Main.rs:972:5
    |
970 | pub struct SAString<T> {
    |            -------- fields in this struct
971 |     s: Vec<T>,
972 |     sa: Vec<usize>,
    |     ^^
973 |     isa: Vec<usize>,
974 |     lcp: Vec<usize>,
    |     ^^^

warning: 2 warnings emitted

ソースコード

diff #

use std::io::Write;

fn main() {
    input! {
        t: usize,
        ask: [(usize, usize, bytes, bytes); t],
    }
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for (n, m, a, b) in ask {
        let mut pos = wildcard_matching(&a, &b);
        if pos.is_empty() {
            writeln!(out, "-1").ok();
            continue;
        }
        let s = a.iter().map(|a| if *a == b'?' {b'a'} else {*a}).chain(b.iter().cloned()).collect::<Vec<_>>();
        let sa = SAString::new(s.clone());
        let x = pos.pop().unwrap();
        let mut ans = vec![(0, x), (n, n + m), (x + m, n)];
        for x in pos {
            let b = vec![(0, x), (n, n + m), (x + m, n)];
            if sa.compare(b.clone(), ans.clone()) == std::cmp::Ordering::Less {
                ans = b;
            }
        }
        let ans = ans.into_iter().flat_map(|(l, r)| s[l..r].iter().cloned()).map(|c| c as char).collect::<String>();
        writeln!(out, "{}", ans).ok();
    }
}

pub fn wildcard_matching(a: &[u8], b: &[u8]) -> Vec<usize> {
    let n = a.len();
    let m = b.len();
    assert!(m > 0);
    if n < m {
        return vec![];
    }
    let mut map = std::collections::BTreeMap::new();
    let a = a
        .iter()
        .map(|a| {
            if *a == b'?' {
                M::zero()
            } else {
                let po = map.entry(*a).or_insert_with(rand);
                M::from(*po)
            }
        })
        .collect::<Vec<_>>();
    let b = b
        .iter()
        .map(|a| {
            if *a == b'?' {
                M::zero()
            } else {
                let po = map.entry(*a).or_insert_with(rand);
                M::from(*po)
            }
        })
        .rev()
        .collect::<Vec<_>>();
    let size = n.next_power_of_two();
    let mut s = vec![M::zero(); size];
    {
        let mut a = a
            .iter()
            .cloned()
            .chain(std::iter::repeat(M::zero()))
            .take(size)
            .map(|a| a * a)
            .collect::<Vec<_>>();
        let mut b = b
            .iter()
            .cloned()
            .chain(std::iter::repeat(M::zero()))
            .take(size)
            .collect::<Vec<_>>();
        a.ntt();
        b.ntt();
        for ((s, a), b) in s.iter_mut().zip(a).zip(b) {
            *s += a * b;
        }
    }
    {
        let mut a = a
            .iter()
            .cloned()
            .chain(std::iter::repeat(M::zero()))
            .take(size)
            .collect::<Vec<_>>();
        let mut b = b
            .iter()
            .cloned()
            .chain(std::iter::repeat(M::zero()))
            .take(size)
            .map(|a| a * a)
            .collect::<Vec<_>>();
        a.ntt();
        b.ntt();
        for ((s, a), b) in s.iter_mut().zip(a).zip(b) {
            *s -= a * b;
        }
    }
    s.intt();
    ((m - 1)..n)
        .filter(|x| s[*x].is_zero())
        .map(|x| x - (m - 1))
        .collect()
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin ModInt ----------
// モンゴメリ乗算を用いる
// ほぼCodeforces用
// 注意
// new_unchecked は値xが 0 <= x < modulo であることを仮定
// ModInt の中身は正規化された値で持ってるので直接読んだり書いたりするとぶっ壊れる
// 奇素数のみ
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn rem() -> u32;
        fn ini() -> u64;
        fn reduce(x: u64) -> u32 {
            debug_assert!(x < (Self::modulo() as u64) << 32);
            let b = (x as u32 * Self::rem()) as u64;
            let t = x + b * Self::modulo() as u64;
            let mut c = (t >> 32) as u32;
            if c >= Self::modulo() {
                c -= Self::modulo();
            }
            c as u32
        }
    }

    #[allow(dead_code)]
    pub enum Mod1_000_000_007 {}

    impl Modulo for Mod1_000_000_007 {
        fn modulo() -> u32 {
            1_000_000_007
        }
        fn rem() -> u32 {
            2226617417
        }
        fn ini() -> u64 {
            582344008
        }
    }

    #[allow(dead_code)]
    pub enum Mod998_244_353 {}

    impl Modulo for Mod998_244_353 {
        fn modulo() -> u32 {
            998_244_353
        }
        fn rem() -> u32 {
            998244351
        }
        fn ini() -> u64 {
            932051910
        }
    }

    #[allow(dead_code)]
    pub fn generate_umekomi_modulo(p: u32) {
        assert!(
            p < (1 << 31)
                && p > 2
                && p & 1 == 1
                && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0)
        );
        let mut t = 1u32;
        let mut s = !p + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        let mut ini = (1u64 << 32) % p as u64;
        ini = (ini << 32) % p as u64;
        assert!(t * p == !0);
        println!("pub enum Mod{} {{}}", p);
        println!("impl Modulo for Mod{} {{", p);
        println!("    fn modulo() -> u32 {{");
        println!("        {}", p);
        println!("    }}");
        println!("    fn rem() -> u32 {{");
        println!("        {}", t);
        println!("    }}");
        println!("    fn ini() -> u64 {{");
        println!("        {}", ini);
        println!("    }}");
        println!("}}");
        let mut f = vec![];
        let mut n = p - 1;
        for i in 2.. {
            if i * i > n {
                break;
            }
            if n % i == 0 {
                f.push(i);
                while n % i == 0 {
                    n /= i;
                }
            }
        }
        if n > 1 {
            f.push(n);
        }
        let mut order = 1;
        let mut n = p - 1;
        while n % 2 == 0 {
            n /= 2;
            order <<= 1;
        }
        let z = (2u64..)
            .find(|z| {
                f.iter()
                    .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1)
            })
            .unwrap();
        let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64);
        println!("impl transform::NTTFriendly for Mod{} {{", p);
        println!("    fn order() -> usize {{");
        println!("        {}", order);
        println!("    }}");
        println!("    fn zeta() -> u32 {{");
        println!("        {}", zeta);
        println!("    }}");
        println!("}}");
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if self.0 < rhs.0 {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(T::reduce(d as u64 * T::ini()))
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            T::reduce(self.0 as u64)
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
    }

    pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 {
        let mut t = 1 % m;
        while n > 0 {
            if n & 1 == 1 {
                t = t * r % m;
            }
            r = r * r % m;
            n >>= 1;
        }
        t
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;

pub trait NTTFriendly: modint::Modulo {
    fn order() -> usize;
    fn zeta() -> u32;
}

type M = ModInt<Mod998_244_353>;

impl NTTFriendly for Mod998_244_353 {
    fn order() -> usize {
        8388608
    }
    fn zeta() -> u32 {
        15311432
    }
}

// 列に対する命令をテキトーに詰めあわせ
// modint, primitive type の2つあたりで使うことを想定
// +, -, *
// zero を要求してないのに仮定してる場所がある
//
// 何も考えずに書き始めたらいろいろよくわからないことになった
// 整理
// 長さが等しいときの加算、減算、dot積はok
// 長さが異なるときはどうする?
// 0埋めされてるというイメージなので
// 加算、減算は素直だがdot積はイマイチ
// dot積だけ長さが等しいとしておく?
// あるいは0埋めのイメージを消すか

use std::ops::*;

pub trait Zero: Sized + Add<Output = Self> {
    fn zero() -> Self;
}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
}

impl Zero for usize {
    fn zero() -> Self {
        0
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

pub trait ArrayNTT {
    type Item;
    fn ntt(&mut self);
    fn intt(&mut self);
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayNTT for [ModInt<T>]
where
    T: NTTFriendly,
{
    type Item = ModInt<T>;
    fn ntt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
        for ph in 1..=len {
            let p = 1 << (len - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn intt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
        for ph in (1..=len).rev() {
            let p = 1 << (len - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        let size = (self.len() + rhs.len() - 1).next_power_of_two();
        let mut f = vec![ModInt::zero(); size];
        let mut g = vec![ModInt::zero(); size];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.ntt();
        g.ntt();
        f.dot_assign(&g);
        f.intt();
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

pub trait PolynomialOperation {
    type Item;
    fn eval(&self, x: Self::Item) -> Self::Item;
    fn derivative(&self) -> Vec<Self::Item>;
    fn integral(&self) -> Vec<Self::Item>;
}

impl<T: Modulo> PolynomialOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn eval(&self, x: Self::Item) -> Self::Item {
        self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a)
    }
    fn derivative(&self) -> Vec<Self::Item> {
        if self.len() <= 1 {
            return vec![];
        }
        self[1..]
            .iter()
            .enumerate()
            .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a)
            .collect()
    }
    fn integral(&self) -> Vec<Self::Item> {
        if self.is_empty() {
            return vec![];
        }
        let mut inv = vec![ModInt::one(); self.len() + 1];
        let mut mul = ModInt::zero();
        for i in 1..=self.len() {
            mul += ModInt::one();
            inv[i] = inv[i - 1] * mul;
        }
        let mut prod = inv[self.len()].inv();
        for i in (1..=self.len()).rev() {
            inv[i] = self[i - 1] * inv[i - 1] * prod;
            prod *= mul;
            mul -= ModInt::one();
        }
        inv[0] = ModInt::zero();
        inv
    }
}

pub trait FPSOperation {
    type Item;
    fn inverse(&self, n: usize) -> Vec<Self::Item>;
    fn log(&self, n: usize) -> Vec<Self::Item>;
    fn exp(&self, n: usize) -> Vec<Self::Item>;
}

impl<T: NTTFriendly> FPSOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn inverse(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.len() > 0 && !self[0].is_zero());
        let len = n.next_power_of_two();
        assert!(2 * len <= T::order());
        let mut b = vec![ModInt::zero(); n];
        b[0] = self[0].inv();
        let mut f = Vec::with_capacity(2 * len);
        let mut g = Vec::with_capacity(2 * len);
        let mut size = 1;
        while size < n {
            g.clear();
            g.extend(b.iter().take(size));
            g.resize(2 * size, ModInt::zero());
            f.clear();
            f.extend(self.iter().take(2 * size));
            f.resize(2 * size, ModInt::zero());
            f.ntt();
            g.ntt();
            f.dot_assign(&g);
            f.intt();
            f[..size].iter_mut().for_each(|f| *f = ModInt::zero());
            f.ntt();
            f.dot_assign(&g);
            f.intt();
            for (b, g) in b[size..].iter_mut().zip(&f[size..]) {
                *b = *b - *g;
            }
            size *= 2;
        }
        b
    }
    fn log(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(false, |p| p.get() == 1));
        let mut b = self.derivative().multiply(&self.inverse(n));
        b.truncate(n - 1);
        let mut b = b.integral();
        b.resize(n, ModInt::zero());
        b
    }
    fn exp(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(true, |a| a.is_zero()));
        assert!(n <= T::order());
        let mut b = vec![ModInt::one()];
        let mut size = 1;
        while size < n {
            size <<= 1;
            let f = b.log(size);
            let g = self[..self.len().min(size)].sub(&f);
            b = b.multiply(&g).add(&b);
            b.truncate(size);
        }
        b.truncate(n);
        b.resize(n, ModInt::zero());
        b
    }
}

// test
//  yuki907: https://yukicoder.me/submissions/712523
//  hhkb2020: https://atcoder.jp/contests/hhkb2020/submissions/26997806
//

// ---------- begin rand ----------
fn rand_memory() -> usize {
    Box::into_raw(Box::new("I hope this is a random number")) as usize
}

fn rand() -> usize {
    static mut X: usize = 0;
    unsafe {
        if X == 0 {
            X = rand_memory();
        }
        X ^= X << 13;
        X ^= X >> 17;
        X ^= X << 5;
        X
    }
}

fn shuffle<T>(a: &mut [T]) {
    for i in 1..a.len() {
        let p = rand() % (i + 1);
        a.swap(i, p);
    }
}
// ---------- end rand ----------

pub struct SAString<T> {
    s: Vec<T>,
    sa: Vec<usize>,
    isa: Vec<usize>,
    lcp: Vec<usize>,
    rmq: RMQ<usize>,
}

impl<T: Ord> SAString<T> {
    pub fn new(s: Vec<T>) -> Self {
        let (sa, isa, lcp) = suffix_array(&s);
        let rmq = RMQ::new(lcp.clone());
        Self {
            s,
            sa,
            isa,
            lcp,
            rmq,
        }
    }
    pub fn find_lcp(&self, x: usize, y: usize) -> usize {
        assert!(x.max(y) < self.s.len());
        if x == y {
            self.s.len() - x.max(y)
        } else {
            let a = self.isa[x.min(y)];
            let b = self.isa[x.max(y)];
            self.rmq.find(a.min(b) + 1, a.max(b) + 1)
        }
    }
    pub fn compare(&self, mut a: Vec<(usize, usize)>, mut b: Vec<(usize, usize)>) -> std::cmp::Ordering {
        assert!(a
            .iter()
            .chain(b.iter())
            .all(|p| p.0 <= p.1 && p.1 <= self.s.len()));
        a.retain(|p| p.0 < p.1);
        b.retain(|p| p.0 < p.1);
        let mut x = 0;
        let mut y = 0;
        while x < a.len() && y < b.len() {
            let a = &mut a[x];
            let b = &mut b[y];
            let len = (a.1 - a.0).min(b.1 - b.0);
            let lcp = self.find_lcp(a.0, b.0).min(len);
            a.0 += lcp;
            b.0 += lcp;
            if a.0 < a.1 && b.0 < b.1 {
                return self.s[a.0].cmp(&self.s[b.0]);
            }
            if a.0 == a.1 {
                x += 1;
            }
            if b.0 == b.1 {
                y += 1;
            }
        }
        (x < a.len()).cmp(&(y < b.len()))
    }
}

// O(N (log N)^2)
// 文字種によらない
// O(N log N) の実装が悪く、log2つの方が早かったので一時的にこちらに更新
// ---------- begin suffix array ----------
fn suffix_array<T: Ord>(s: &[T]) -> (Vec<usize>, Vec<usize>, Vec<usize>) {
    let n = s.len();
    let mut z = s.iter().collect::<Vec<_>>();
    z.sort();
    z.dedup();
    let mut ord = Vec::with_capacity(n);
    for s in s.iter() {
        ord.push(z.binary_search(&s).unwrap() as u32 + 1);
    }
    let mut z = (0..n).map(|p| ((ord[p], 0), p)).collect::<Vec<_>>();
    z.sort_by_key(|p| p.0);
    let mut len = 1;
    while len < n {
        for z in z.iter_mut() {
            z.0 = (ord[z.1], ord.get(z.1 + len).map_or(0, |p| *p));
        }
        z.sort_by_key(|p| p.0);
        let mut id = 1;
        let mut prev = z[0].0;
        for z in z.iter_mut() {
            if z.0 != prev {
                id += 1;
                prev = z.0;
            }
            ord[z.1] = id;
        }
        len <<= 1;
    }
    let sa = z.into_iter().map(|p| p.1).collect::<Vec<_>>();
    let mut isa = vec![0; s.len()];
    for (i, sa) in sa.iter().enumerate() {
        isa[*sa] = i;
    }
    let mut lcp = vec![0; s.len()];
    let mut h = 0;
    for i in 0..sa.len() {
        if isa[i] + 1 < sa.len() {
            let j = sa[isa[i] + 1];
            while i.max(j) + h < sa.len() && s[i + h] == s[j + h] {
                h += 1;
            }
            lcp[isa[i] + 1] = h;
            if h > 0 {
                h -= 1;
            }
        }
    }
    (sa, isa, lcp)
}
// ---------- end suffix array ----------

pub struct RMQ<T> {
    data: Vec<T>,
    table: SparseTable<T>,
    bit: Vec<usize>,
}

impl<T> RMQ<T>
where
    T: Ord + Copy,
{
    pub fn new(data: Vec<T>) -> Self {
        assert!(!data.is_empty());
        let mut bit = vec![0; data.len()];
        let w = 8 * std::mem::size_of_val(&bit[0]);
        let mut stack: Vec<usize> = vec![];
        let mut table_ini = Vec::with_capacity((data.len() + w - 1) / w);
        for (bit, data) in bit.chunks_mut(w).zip(data.chunks(w)) {
            stack.clear();
            let mut b = 0;
            for (i, (bit, d)) in bit.iter_mut().zip(data.iter()).enumerate() {
                while stack.last().map_or(false, |x| data[*x] > *d) {
                    b ^= 1 << stack.pop().unwrap();
                }
                b |= 1 << i;
                *bit = b;
                stack.push(i);
            }
            table_ini.push(data[stack[0]]);
        }
        let table = SparseTable::new(table_ini);
        RMQ { data, table, bit }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l < r && r <= self.data.len());
        let w = 8 * std::mem::size_of_val(&self.bit[0]);
        let r = r - 1;
        let p = l / w;
        let q = r / w;
        if p == q {
            let pos = l + (self.bit[r] >> (l % w)).trailing_zeros() as usize;
            self.data[pos]
        } else {
            let lw = l + (self.bit[p * w + w - 1] >> (l % w)).trailing_zeros() as usize;
            let rw = q * w + self.bit[r].trailing_zeros() as usize;
            let mut res = std::cmp::min(self.data[lw], self.data[rw]);
            if p + 1 < q {
                res = std::cmp::min(res, self.table.find(p + 1, q));
            }
            res
        }
    }
}

// ---------- begin sparse table (min) ----------
pub struct SparseTable<T> {
    table: Vec<Vec<T>>,
    size: usize,
}

impl<T> SparseTable<T>
where
    T: Ord + Copy,
{
    pub fn new(mut a: Vec<T>) -> Self {
        assert!(a.len() > 0);
        let size = a.len();
        let mut table = vec![];
        let mut w = 1;
        while w + 1 <= a.len() {
            let next = a
                .iter()
                .zip(a[w..].iter())
                .map(|p| std::cmp::min(*p.0, *p.1))
                .collect::<Vec<_>>();
            table.push(a);
            a = next;
            w <<= 1;
        }
        table.push(a);
        SparseTable {
            table: table,
            size: size,
        }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l < r && r <= self.size);
        let k = 8 * std::mem::size_of::<usize>() - 1 - (r - l).leading_zeros() as usize;
        let table = &self.table[k];
        std::cmp::min(table[l], table[r - (1 << k)])
    }
}
// ---------- end sparse table (min) ----------
0