結果
問題 | No.1516 simple 門松列 problem Re:MASTER |
ユーザー | vwxyz |
提出日時 | 2023-02-16 07:13:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 5,325 ms / 6,000 ms |
コード長 | 45,624 bytes |
コンパイル時間 | 144 ms |
コンパイル使用メモリ | 86,872 KB |
実行使用メモリ | 80,400 KB |
最終ジャッジ日時 | 2024-07-18 10:21:34 |
合計ジャッジ時間 | 24,425 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
63,616 KB |
testcase_01 | AC | 371 ms
77,312 KB |
testcase_02 | AC | 2,299 ms
78,652 KB |
testcase_03 | AC | 55 ms
72,064 KB |
testcase_04 | AC | 51 ms
72,192 KB |
testcase_05 | AC | 59 ms
73,088 KB |
testcase_06 | AC | 136 ms
76,072 KB |
testcase_07 | AC | 377 ms
77,032 KB |
testcase_08 | AC | 551 ms
76,608 KB |
testcase_09 | AC | 51 ms
71,424 KB |
testcase_10 | AC | 143 ms
76,288 KB |
testcase_11 | AC | 63 ms
72,960 KB |
testcase_12 | AC | 52 ms
72,064 KB |
testcase_13 | AC | 52 ms
71,680 KB |
testcase_14 | AC | 4,651 ms
79,968 KB |
testcase_15 | AC | 2,095 ms
77,812 KB |
testcase_16 | AC | 1,026 ms
76,836 KB |
testcase_17 | AC | 393 ms
76,548 KB |
testcase_18 | AC | 144 ms
76,320 KB |
testcase_19 | AC | 95 ms
76,084 KB |
testcase_20 | AC | 5,325 ms
80,400 KB |
testcase_21 | AC | 5,271 ms
80,072 KB |
ソースコード
import sys readline=sys.stdin.readline def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu def Primitive_Root(p): if p==2: return 1 if p==167772161: return 3 if p==469762049: return 3 if p==754974721: return 11 if p==998244353: return 3 if p==10**9+7: return 5 divisors=[2] pp=(p-1)//2 while pp%2==0: pp//=2 for d in range(3,pp+1,2): if d**2>pp: break if pp%d==0: divisors.append(d) while pp%d==0: pp//=d if pp>1: divisors.append(pp) primitive_root=2 while True: for d in divisors: if pow(primitive_root,(p-1)//d,p)==1: break else: return primitive_root primitive_root+=1 class Polynomial: def __init__(self,polynomial,max_degree=-1,eps=0,mod=0): self.max_degree=max_degree if self.max_degree!=-1 and len(polynomial)>self.max_degree+1: self.polynomial=polynomial[:self.max_degree+1] else: self.polynomial=polynomial self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Polynomial: return False if len(self.polynomial)!=len(other.polynomial): return False for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return False return True def __ne__(self,other): if type(other)!=Polynomial: return True if len(self.polynomial)!=len(other.polynomial): return True for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return True return False def __add__(self,other): if type(other)==Polynomial: summ=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): summ[i]+=self.polynomial[i] for i in range(len(other.polynomial)): summ[i]+=other.polynomial[i] if self.mod: for i in range(len(summ)): summ[i]%=self.mod else: summ=[x for x in self.polynomial] if self.polynomial else [0] summ[0]+=other if self.mod: summ[0]%=self.mod while summ and abs(summ[-1])<=self.eps: summ.pop() summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return summ def __sub__(self,other): if type(other)==Polynomial: diff=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): diff[i]+=self.polynomial[i] for i in range(len(other.polynomial)): diff[i]-=other.polynomial[i] if self.mod: for i in range(len(diff)): diff[i]%=self.mod else: diff=[x for x in self.polynomial] if self.polynomial else [0] diff[0]-=other if self.mod: diff[0]%=self.mod while diff and abs(diff[-1])<=self.eps: diff.pop() diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Polynomial: if self.max_degree==-1: prod=[0]*(len(self.polynomial)+len(other.polynomial)-1) for i in range(len(self.polynomial)): for j in range(len(other.polynomial)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] else: prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1) for i in range(len(self.polynomial)): for j in range(min(len(other.polynomial),self.max_degree+1-i)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] if self.mod: for i in range(len(prod)): prod[i]%=self.mod else: if self.mod: prod=[x*other%self.mod for x in self.polynomial] else: prod=[x*other for x in self.polynomial] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): assert type(other)==Polynomial if self.mod: prod=NTT(self.polynomial,other.polynomial) else: prod=FFT(self.polynomial,other.polynomial) if self.max_degree!=-1 and len(prod)>self.max_degree+1: prod=prod[:self.max_degree+1] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __truediv__(self,other): if type(other)==Polynomial: assert other.polynomial for n in range(len(other.polynomial)): if self.eps<abs(other.polynomial[n]): break assert len(self.polynomial)>n for i in range(n): assert abs(self.polynomial[i])<=self.eps self_polynomial=self.polynomial[n:] other_polynomial=other.polynomial[n:] if self.mod: inve=MOD(self.mod).Pow(other_polynomial[0],-1) else: inve=1/other_polynomial[0] quot=[] for i in range(len(self_polynomial)-len(other_polynomial)+1): if self.mod: quot.append(self_polynomial[i]*inve%self.mod) else: quot.append(self_polynomial[i]*inve) for j in range(len(other_polynomial)): self_polynomial[i+j]-=other_polynomial[j]*quot[-1] if self.mod: self_polynomial[i+j]%=self.mod for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)): if self.eps<abs(self_polynomial[i]): assert self.max_degree!=-1 self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial)) while len(quot)<=self.max_degree: self_polynomial.append(0) if self.mod: quot.append(self_polynomial[0]*inve%self.mod) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))] else: quot.append(self_polynomial[0]*inve) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))] break quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: assert self.eps<abs(other) if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __rtruediv__(self,other): assert self.polynomial and self.eps<self.polynomial[0] assert self.max_degree!=-1 if self.mod: quot=[MOD(self.mod).Pow(self.polynomial[0],-1)] if self.mod==998244353: prim_root=3 prim_root_inve=332748118 else: prim_root=Primitive_Root(self.mod) prim_root_inve=MOD(self.mod).Pow(prim_root,-1) def DFT(polynomial,n,inverse=False): polynomial=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod x=pow((mod+1)//2,n,mod) for i in range(1<<n): polynomial[i]*=x polynomial[i]%=mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod return polynomial else: quot=[1/self.polynomial[0]] def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] polynomial=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] for i in range(1<<n): polynomial[i]=round((polynomial[i]/(1<<n)).real) else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) return polynomial for n in range(self.max_degree.bit_length()): prev=quot if self.mod: polynomial=[x*y*y%self.mod for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))] quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1] else: polynomial=[x*y*y for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))] quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1] for i in range(1<<n): quot[i]=2*prev[i]-quot[i] if self.mod: quot[i]%=self.mod for i in range(1<<n,1<<n+1): quot[i]=-quot[i] if self.mod: quot[i]%=self.mod quot=quot[:self.max_degree+1] for i in range(len(quot)): quot[i]*=other if self.mod: quot[i]%=self.mod return quot def __floordiv__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __mod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return rema def __divmod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot,rema def __neg__(self): if self.mod: nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return posi def __bool__(self): return self.polynomial def __getitem__(self,n): if type(n)==int: if n<=len(self.polynomial)-1: return self.polynomial[n] else: return 0 else: return Polynomial(polynomial=self.polynomial[n],max_degree=self.max_degree,eps=self.eps,mod=self.mod) def __setitem__(self,n,a): if self.mod: a%=self.mod if self.max_degree==-1 or n<=self.max_degree: if n<=len(self.polynomial)-1: self.polynomial[n]=a elif self.eps<abs(a): self.polynomial+=[0]*(n-len(self.polynomial))+[a] def __iter__(self): for x in self.polynomial: yield x def __call__(self,x): retu=0 pow_x=1 for i in range(len(self.polynomial)): retu+=pow_x*self.polynomial[i] pow_x*=x if self.mod: retu%=self.mod pow_x%=self.mod return retu def __str__(self): return "["+", ".join(map(str,self.polynomial))+"]" def Degree(self): return len(self.polynomial)-1 def NTT(polynomial0,polynomial1): if mod==998244353: prim_root=3 prim_root_inve=332748118 else: prim_root=Primitive_Root(mod) prim_root_inve=MOD(mod).Pow(prim_root,-1) def DFT(polynomial,n,inverse=False): if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod x=pow((mod+1)//2,n,mod) for i in range(1<<n): polynomial[i]*=x polynomial[i]%=mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod l=len(polynomial0)+len(polynomial1)-1 n=(len(polynomial0)+len(polynomial1)-2).bit_length() polynomial0=polynomial0+[0]*((1<<n)-len(polynomial0)) polynomial1=polynomial1+[0]*((1<<n)-len(polynomial1)) DFT(polynomial0,n) DFT(polynomial1,n) ntt=[x*y%mod for x,y in zip(polynomial0,polynomial1)] DFT(ntt,n,inverse=True) ntt=ntt[:l] return ntt def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False): if type(poly_nume)==Polynomial: poly_nume=poly_nume.polynomial if type(poly_deno)==Polynomial: poly_deno=poly_deno.polynomial if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_nume,poly_deno): conv=[0]*(len(poly_nume)+len(poly_deno)-1) for i in range(len(poly_nume)): for j in range(len(poly_deno)): conv[i+j]+=poly_nume[i]*poly_deno[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)] if N%2: poly_nume=convolve(poly_nume,poly_deno_)[1::2] else: poly_nume=convolve(poly_nume,poly_deno_)[::2] poly_deno=convolve(poly_deno,poly_deno_)[::2] if fft and mod: for i in range(len(poly_nume)): poly_nume[i]%=mod for i in range(len(poly_deno)): poly_deno[i]%=mod N//=2 return poly_nume[0] class Matrix: def __init__(self,H=0,W=0,matrix=False,eps=0,mod=0,identity=0): if identity: if H: self.H=H self.W=H else: self.H=W self.W=W self.matrix=[[0]*self.W for i in range(self.H)] for i in range(self.H): self.matrix[i][i]=identity elif matrix: self.matrix=matrix self.H=len(self.matrix) self.W=len(self.matrix[0]) if self.matrix else 0 else: self.H=H self.W=W self.matrix=[[0]*self.W for i in range(self.H)] self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Matrix: return False if self.H!=other.H: return False if self.mod: for i in range(self.H): for j in range(self.W): if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod: return False else: for i in range(self.H): for j in range(self.W): if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]): return False return True def __ne__(self,other): if type(other)!=Matrix: return True if self.H!=other.H: return True if self.mod: for i in range(self.H): for j in range(self.W): if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod: return True else: for i in range(self.H): for j in range(self.W): if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]): return True return False def __add__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W if self.mod: summ=Matrix(matrix=[[(self.matrix[i][j]+other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: summ=Matrix(matrix=[[self.matrix[i][j]+other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: if self.mod: summ=Matrix(matrix=[[(self.matrix[i][j]+other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: summ=Matrix(matrix=[[self.matrix[i][j]+other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return summ def __sub__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W if self.mod: diff=Matrix(matrix=[[(self.matrix[i][j]-other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: diff=Matrix(matrix=[[self.matrix[i][j]-other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: if self.mod: diff=Matrix(matrix=[[(self.matrix[i][j]-other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: diff=Matrix(matrix=[[self.matrix[i][j]-other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W if self.mod: prod=Matrix(matrix=[[(self.matrix[i][j]*other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: prod=Matrix(matrix=[[self.matrix[i][j]*other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: if self.mod: prod=Matrix(matrix=[[(self.matrix[i][j]*other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: prod=Matrix(matrix=[[self.matrix[i][j]*other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): if type(other)==Matrix: assert self.W==other.H prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod) for i in range(self.H): for j in range(other.W): for k in range(self.W): prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j] if self.mod: prod.matrix[i][j]%=self.mod elif type(other)==int: assert self.H==self.W if other==0: prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1) elif other==1: prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1) doub=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) while other>=2: if other&1: prod@=doub doub@=doub other>>=1 prod@=doub return prod def __truediv__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W if self.mod: quot=Matrix(matrix=[[(self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1))%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: quot=Matrix(matrix=[[self.matrix[i][j]/other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Matrix(matrix=[[(self.matrix[i][j]*inve)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: quot=Matrix(matrix=[[self.matrix[i][j]/other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return quot def __floordiv__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W quot=Matrix(matrix=[[self.matrix[i][j]//other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: quot=Matrix(matrix=[[self.matrix[i][j]//other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return quot def __mod__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W rema=Matrix(matrix=[[self.matrix[i][j]%other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: rema=Matrix(matrix=[[self.matrix[i][j]%other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return rema def __pow__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W if self.mod: powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j],self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: if self.mod: powe=Matrix(matrix=[[pow(self.matrix[i][j],other,self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: powe=Matrix(matrix=[[pow(self.matrix[i][j],other) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return powe def __lshift__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W lshi=Matrix(matrix=[[self.matrix[i][j]<<other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: lshi=Matrix(matrix=[[self.matrix[i][j]<<other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return lshi def __rshift__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W rshi=Matrix(matrix=[[self.matrix[i][j]>>other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: rshi=Matrix(matrix=[[self.matrix[i][j]>>other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return rshi def __and__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W conj=Matrix(matrix=[[self.matrix[i][j]&other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: conj=Matrix(matrix=[[self.matrix[i][j]&other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return conj def __or__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W disj=Matrix(matrix=[[self.matrix[i][j]|other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: disj=Matrix(matrix=[[self.matrix[i][j]|other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return disj def __xor__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W excl=Matrix(matrix=[[self.matrix[i][j]^other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: excl=Matrix(matrix=[[self.matrix[i][j]^other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return excl def __iadd__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]+=other.matrix[i][j] if self.mod: self.matrix[i][j]%=self.mod else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]+=other if self.mod: self.matrix[i][j]%=self.mod return self def __isub__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]-=other.matrix[i][j] if self.mod: self.matrix[i][j]%=self.mod else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]-=other if self.mod: self.matrix[i][j]%=self.mod return self def __imul__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]*=other.matrix[i][j] if self.mod: self.matrix[i][j]%=self.mod else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]*=other if self.mod: self.matrix[i][j]%=self.mod return self def __imatmul__(self,other): if type(other)==Matrix: assert self.W==other.H prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod) for i in range(self.H): for j in range(other.W): for k in range(self.W): prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j] if self.mod: prod.matrix[i][j]%=self.mod elif type(other)==int: assert self.H==self.W if other==0: return Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1) elif other==1: prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1) doub=self while other>=2: if other&1: prod@=doub doub@=doub other>>=1 prod@=doub return prod def __itruediv__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): if self.mod: self.matrix[i][j]=self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1)%self.mod else: self.matrix[i][j]/=other.matrix[i][j] else: if self.mod: inve=MOD(self.mod).Pow(other,-1) for i in range(self.H): for j in range(self.W): if self.mod: self.matrix[i][j]=self.matrix[i][j]*inve%self.mod else: self.matrix[i][j]/=other return self def __ifloordiv__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]//=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]//=other return self def __imod__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]%=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]%=other return self def __ipow__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): if self.mod: self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j],self.mod) else: self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j]) else: for i in range(self.H): for j in range(self.W): if self.mod: self.matrix[i][j]=pow(self.matrix[i][j],other,self.mod) else: self.matrix[i][j]=pow(self.matrix[i][j],other) return self def __ilshift__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]<<=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]<<=other return self def __irshift__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]>>=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]>>=other return self def __iand__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]&=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]&=other return self def __ior__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]|=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]|=other return self def __ixor__(self,other): if type(other)==Matrix: assert self.H==other.H assert self.W==other.W for i in range(self.H): for j in range(self.W): self.matrix[i][j]^=other.matrix[i][j] else: for i in range(self.H): for j in range(self.W): self.matrix[i][j]^=other return self def __neg__(self): if self.mod: nega=Matrix(matrix=[[(-self.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) else: nega=Matrix(matrix=[[-self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return posi def __invert__(self): inve=Matrix(matrix=[[~self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return inve def __abs__(self): abso=Matrix(matrix=[[abs(self.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) return abso def __getitem__(self,i): if type(i)==int: return self.matrix[i] elif type(i)==tuple: i,j=i if type(i)==int: i=slice(i,i+1) if type(j)==int: j=slice(j,j+1) return Matrix(matrix=[lst[j] for lst in self.matrix[i]],eps=self.eps,mod=self.mod) def __contains__(self,x): for i in range(self.H): if x in self.matrix[i]: return True return False def __str__(self): digit=[max(len(str(self.matrix[i][j])) for i in range(self.H)) for j in range(self.W)] return "\n".join([(" [" if i else "[[")+", ".join([str(self.matrix[i][j]).rjust(digit[j]," ") for j in range(self.W)])+"]" for i in range(self.H)])+"]" def __bool__(self): return True def Transpose(self): return Matrix(matrix=[[self.matrix[i][j] for i in range(self.H)] for j in range(self.W)]) def Trace(self): assert self.H==self.W trace=sum(self.matrix[i][i] for i in range(self.H)) if self.mod: trace%=self.mod return trace def Elem_Raw_Operate_1(self,i0,i1): self.matrix[i0],self.matrix[i1]=self.matrix[i1],self.matrix[i0] def Elem_Raw_Operate_2(self,i,c): if self.mod: self.matrix[i]=[self.matrix[i][j]*c%self.mod for j in range(self.W)] else: self.matrix[i]=[self.matrix[i][j]*c for j in range(self.W)] def Elem_Raw_Operate_3(self,i0,i1,c): if self.mod: self.matrix[i0]=[(self.matrix[i0][j]+c*self.matrix[i1][j])%self.mod for j in range(self.W)] else: self.matrix[i0]=[self.matrix[i0][j]+c*self.matrix[i1][j] for j in range(self.W)] def Elimination(self,determinant=False,inverse_matrix=False,linear_equation=False,rank=False,upper_triangular=False): h=0 ut=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod) if determinant or inverse_matrix: assert self.H==self.W det=1 if inverse_matrix: assert self.H==self.W im=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1) if linear_equation: assert self.H==linear_equation.H le=Matrix(matrix=[[linear_equation.matrix[i][j] for j in range(linear_equation.W)] for i in range(linear_equation.H)],eps=self.eps,mod=self.mod) for j in range(ut.W): for i in range(h,ut.H): if abs(ut.matrix[i][j])>ut.eps: if determinant or inverse_matrix: det*=ut.matrix[i][j] if self.mod: det%=self.mod if self.mod: inve=MOD(self.mod).Pow(ut.matrix[i][j],-1) else: inve=1/ut.matrix[i][j] ut.Elem_Raw_Operate_1(i,h) if determinant and i!=h and self.mod: det=(-det)%self.mod if inverse_matrix: im.Elem_Raw_Operate_1(i,h) if linear_equation: le.Elem_Raw_Operate_1(i,h) ut.Elem_Raw_Operate_2(h,inve) if inverse_matrix: im.Elem_Raw_Operate_2(h,inve) if linear_equation: le.Elem_Raw_Operate_2(h,inve) for ii in range(ut.H): if ii==h: continue x=-ut.matrix[ii][j] ut.Elem_Raw_Operate_3(ii,h,x) if inverse_matrix: im.Elem_Raw_Operate_3(ii,h,x) if linear_equation: le.Elem_Raw_Operate_3(ii,h,x) h+=1 break else: det=0 if any(le[i][0] for i in range(h,self.H)): le=None tpl=() if determinant: tpl+=(det,) if inverse_matrix: if det==0: im=None tpl+=(im,) if linear_equation: tpl+=(le,) if rank: tpl+=(h,) if upper_triangular: tpl+=(ut,) if len(tpl)==1: tpl=tpl[0] return tpl mod=998244353 N,K=map(int,readline().split()) M=Matrix(2*K**2,2*K**2,mod=mod) for i in range(K): for j in range(K): for k in range(K): if len({i,j,k})==3 and j in (min(i,j,k),max(i,j,k)): M[i*K+j][j*K+k]+=1 M[K**2+i*K+j][K**2+j*K+k]+=1 M[i*K+j][K**2+j*K+k]+=k A=Matrix(1,2*K**2,mod=mod) for i in range(K**2): A[0][i]=1 A[0][i+K**2]+=i//K+i%K A@=M@(N-2) print(sum(A[0][:K**2])%mod,sum(A[0][K**2:])%mod)