結果
問題 | No.1778 括弧列クエリ / Bracketed Sequence Query |
ユーザー | 草苺奶昔 |
提出日時 | 2023-02-17 12:00:16 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 409 ms / 2,000 ms |
コード長 | 7,917 bytes |
コンパイル時間 | 15,528 ms |
コンパイル使用メモリ | 224,640 KB |
実行使用メモリ | 70,692 KB |
最終ジャッジ日時 | 2024-07-19 06:58:58 |
合計ジャッジ時間 | 23,612 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 164 ms
7,840 KB |
testcase_01 | AC | 177 ms
7,840 KB |
testcase_02 | AC | 182 ms
7,836 KB |
testcase_03 | AC | 137 ms
7,712 KB |
testcase_04 | AC | 168 ms
7,844 KB |
testcase_05 | AC | 188 ms
27,564 KB |
testcase_06 | AC | 93 ms
7,808 KB |
testcase_07 | AC | 14 ms
12,544 KB |
testcase_08 | AC | 335 ms
63,488 KB |
testcase_09 | AC | 39 ms
21,120 KB |
testcase_10 | AC | 148 ms
44,288 KB |
testcase_11 | AC | 132 ms
31,488 KB |
testcase_12 | AC | 177 ms
27,904 KB |
testcase_13 | AC | 304 ms
60,544 KB |
testcase_14 | AC | 137 ms
40,320 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 399 ms
63,872 KB |
testcase_17 | AC | 323 ms
63,744 KB |
testcase_18 | AC | 377 ms
63,872 KB |
testcase_19 | AC | 328 ms
63,744 KB |
testcase_20 | AC | 340 ms
63,872 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 255 ms
48,512 KB |
testcase_24 | AC | 287 ms
59,008 KB |
testcase_25 | AC | 308 ms
60,672 KB |
testcase_26 | AC | 409 ms
70,016 KB |
testcase_27 | AC | 231 ms
70,692 KB |
ソースコード
package main import ( "bufio" "fmt" "math/bits" "os" ) func main() { // fmt.Println(BracketTree("(())()")) // https://yukicoder.me/problems/no/1778 // 给定一个有效的括号序列,每次可以删除一段匹配的括号 // 给定q个查询,每个查询形如 [start,end) // 求包含这段括号的区间中最靠内部的一对起始点 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, q int fmt.Fscan(in, &n, &q) var s string fmt.Fscan(in, &s) tree, leftRight := BracketTree(s) idToRoot := make([]int, n) // 每个起点/终点位置对应的树节点 [0, n) for i := 1; i < len(leftRight); i++ { left, right := leftRight[i][0], leftRight[i][1] idToRoot[left] = i idToRoot[right] = i } lca := NewLCA((n/2)+1, 0) for i := 0; i < len(tree); i++ { for _, j := range tree[i] { lca.AddEdge(i, j, 1) } } lca.Build() for i := 0; i < q; i++ { var start, end int // 1<=start<end<=n fmt.Fscan(in, &start, &end) start-- end-- root1, root2 := idToRoot[start], idToRoot[end] lca_ := lca.QueryLCA(root1, root2) if lca_ == 0 { // 不被包含 fmt.Fprintln(out, -1) } else { left, right := leftRight[lca_][0], leftRight[lca_][1] fmt.Fprintln(out, left+1, right+1) } } } func BracketTree(s string) (graph [][]int, leftRight [][2]int) { n := len(s) / 2 graph = make([][]int, n+1) leftRight = make([][2]int, n+1) now, nxt := 0, 1 leftRight[0] = [2]int{0, len(s)} par := make([]int, n+1) for i := range par { par[i] = -1 } for i := range s { if s[i] == '(' { graph[now] = append(graph[now], nxt) par[nxt] = now leftRight[nxt][0] = i now = nxt nxt++ } if s[i] == ')' { leftRight[now][1] = i now = par[now] } } return } const INF int = 1e18 type LCA struct { Depth []int Tree [][]edge n int root int bitLen int distToRoot []int // 节点j向上跳2^i步的父节点 dp [][]int // 节点j向上跳2^i步经过的最大边权 dpWeight1 [][]int // 节点j向上跳2^i步经过的最小边权 dpWeight2 [][]int } type edge struct{ to, weight int } func NewLCA(n int, root int) *LCA { lca := &LCA{ Tree: make([][]edge, n), Depth: make([]int, n), n: n, root: root, bitLen: bits.Len(uint(n)), distToRoot: make([]int, n), } return lca } // 添加权值为w的无向边(u, v). func (lca *LCA) AddEdge(u, v, w int) { lca.Tree[u] = append(lca.Tree[u], edge{v, w}) lca.Tree[v] = append(lca.Tree[v], edge{u, w}) } func (lca *LCA) Build() { lca.dp, lca.dpWeight1, lca.dpWeight2 = makeDp(lca) lca.dfsAndInitDp(lca.root, -1, 0, 0) lca.fillDp() } // 查询树节点两点的最近公共祖先 func (lca *LCA) QueryLCA(root1, root2 int) int { if lca.Depth[root1] < lca.Depth[root2] { root1, root2 = root2, root1 } root1 = lca.UpToDepth(root1, lca.Depth[root2]) if root1 == root2 { return root1 } for i := lca.bitLen - 1; i >= 0; i-- { if lca.dp[i][root1] != lca.dp[i][root2] { root1 = lca.dp[i][root1] root2 = lca.dp[i][root2] } } return lca.dp[0][root1] } // 查询树节点两点间距离 // weighted: 是否将边权计入距离 func (lca *LCA) QueryDist(root1, root2 int, weighted bool) int { if weighted { return lca.distToRoot[root1] + lca.distToRoot[root2] - 2*lca.distToRoot[lca.QueryLCA(root1, root2)] } return lca.Depth[root1] + lca.Depth[root2] - 2*lca.Depth[lca.QueryLCA(root1, root2)] } // 查询树节点两点路径上最大边权(倍增的时候维护其他属性) // isEdge 为true表示查询路径上边权,为false表示查询路径上点权 func (lca *LCA) QueryMaxWeight(root1, root2 int, isEdge bool) int { res := -INF if lca.Depth[root1] < lca.Depth[root2] { root1, root2 = root2, root1 } toDepth := lca.Depth[root2] for i := lca.bitLen - 1; i >= 0; i-- { // upToDepth if (lca.Depth[root1]-toDepth)&(1<<i) > 0 { res = max(res, lca.dpWeight1[i][root1]) root1 = lca.dp[i][root1] } } if root1 == root2 { return res } for i := lca.bitLen - 1; i >= 0; i-- { if lca.dp[i][root1] != lca.dp[i][root2] { res = max(res, max(lca.dpWeight1[i][root1], lca.dpWeight1[i][root2])) root1 = lca.dp[i][root1] root2 = lca.dp[i][root2] } } res = max(res, max(lca.dpWeight1[0][root1], lca.dpWeight1[0][root2])) if !isEdge { lca_ := lca.dp[0][root1] res = max(res, lca.dpWeight1[0][lca_]) } return res } // 查询树节点两点路径上最小边权(倍增的时候维护其他属性) // isEdge 为true表示查询路径上边权,为false表示查询路径上点权 func (lca *LCA) QueryMinWeight(root1, root2 int, isEdge bool) int { res := INF if lca.Depth[root1] < lca.Depth[root2] { root1, root2 = root2, root1 } toDepth := lca.Depth[root2] for i := lca.bitLen - 1; i >= 0; i-- { // upToDepth if (lca.Depth[root1]-toDepth)&(1<<i) > 0 { res = min(res, lca.dpWeight2[i][root1]) root1 = lca.dp[i][root1] } } if root1 == root2 { return res } for i := lca.bitLen - 1; i >= 0; i-- { if lca.dp[i][root1] != lca.dp[i][root2] { res = min(res, min(lca.dpWeight2[i][root1], lca.dpWeight2[i][root2])) root1 = lca.dp[i][root1] root2 = lca.dp[i][root2] } } res = min(res, min(lca.dpWeight2[0][root1], lca.dpWeight2[0][root2])) if !isEdge { lca_ := lca.dp[0][root1] res = min(res, lca.dpWeight2[0][lca_]) } return res } // 查询树节点root的第k个祖先(向上跳k步),如果不存在这样的祖先节点,返回 -1 func (lca *LCA) QueryKthAncestor(root, k int) int { bit := 0 for k > 0 { if k&1 == 1 { root = lca.dp[bit][root] if root == -1 { return -1 } } bit++ k >>= 1 } return root } // 从 root 开始向上跳到指定深度 toDepth,toDepth<=dep[v],返回跳到的节点 func (lca *LCA) UpToDepth(root, toDepth int) int { if toDepth >= lca.Depth[root] { return root } for i := lca.bitLen - 1; i >= 0; i-- { if (lca.Depth[root]-toDepth)&(1<<i) > 0 { root = lca.dp[i][root] } } return root } // 从start节点跳向target节点,跳过step个节点(0-indexed) // 返回跳到的节点,如果不存在这样的节点,返回-1 func (lca *LCA) Jump(start, target, step int) int { lca_ := lca.QueryLCA(start, target) dep1, dep2, deplca := lca.Depth[start], lca.Depth[target], lca.Depth[lca_] dist := dep1 + dep2 - 2*deplca if step > dist { return -1 } if step <= dep1-deplca { return lca.QueryKthAncestor(start, step) } return lca.QueryKthAncestor(target, dist-step) } func (lca *LCA) dfsAndInitDp(cur, pre, dep, dist int) { lca.Depth[cur] = dep lca.dp[0][cur] = pre lca.distToRoot[cur] = dist for _, e := range lca.Tree[cur] { if next := e.to; next != pre { lca.dpWeight1[0][next] = e.weight lca.dpWeight2[0][next] = e.weight lca.dfsAndInitDp(next, cur, dep+1, dist+e.weight) } } } func makeDp(lca *LCA) (dp, dpWeight1, dpWeight2 [][]int) { dp, dpWeight1, dpWeight2 = make([][]int, lca.bitLen), make([][]int, lca.bitLen), make([][]int, lca.bitLen) for i := 0; i < lca.bitLen; i++ { dp[i], dpWeight1[i], dpWeight2[i] = make([]int, lca.n), make([]int, lca.n), make([]int, lca.n) for j := 0; j < lca.n; j++ { dp[i][j] = -1 dpWeight1[i][j] = -INF dpWeight2[i][j] = INF } } return } func (lca *LCA) fillDp() { for i := 0; i < lca.bitLen-1; i++ { for j := 0; j < lca.n; j++ { if lca.dp[i][j] == -1 { lca.dp[i+1][j] = -1 } else { lca.dp[i+1][j] = lca.dp[i][lca.dp[i][j]] lca.dpWeight1[i+1][j] = max(lca.dpWeight1[i][j], lca.dpWeight1[i][lca.dp[i][j]]) lca.dpWeight2[i+1][j] = min(lca.dpWeight2[i][j], lca.dpWeight2[i][lca.dp[i][j]]) } } } return } func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func maxWithKey(key func(x int) int, args ...int) int { max := args[0] for _, v := range args[1:] { if key(max) < key(v) { max = v } } return max }