結果
| 問題 |
No.2218 Multiple LIS
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-17 21:51:57 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 447 ms / 3,000 ms |
| コード長 | 3,961 bytes |
| コンパイル時間 | 259 ms |
| コンパイル使用メモリ | 82,560 KB |
| 実行使用メモリ | 90,784 KB |
| 最終ジャッジ日時 | 2024-07-19 13:05:22 |
| 合計ジャッジ時間 | 7,981 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
ソースコード
import sys
#sys.setrecursionlimit(500000)
def I(): return int(sys.stdin.readline().rstrip())
def MI(): return map(int,sys.stdin.readline().rstrip().split())
def TI(): return tuple(map(int,sys.stdin.readline().rstrip().split()))
def LI(): return list(map(int,sys.stdin.readline().rstrip().split()))
def S(): return sys.stdin.readline().rstrip()
def LS(): return list(sys.stdin.readline().rstrip())
#for i, pi in enumerate(p):
from collections import defaultdict,deque
import bisect
import itertools
dic = defaultdict(int)
d = deque()
YN = ['No','Yes']
def gcd(a, b):
while b: a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = y * y % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i * i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += i % 2 + (3 if i % 3 == 1 else 1)
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
def divisors(N): #約数全列挙
pf = primeFactor(N)
ret = [1]
for p in pf:
ret_prev = ret
ret = []
for i in range(pf[p]+1):
for r in ret_prev:
ret.append(r * (p ** i))
return sorted(ret)
def divisors_pf(pf):
ret = [1]
for p in pf:
ret_prev = ret
ret = []
for i in range(pf[p]+1):
for r in ret_prev:
ret.append(r * (p ** i))
return sorted(ret)
def isPrime(n):
if n in {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}: return 1
if n <= 100: return 0
for i in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]:
if n % i == 0: return 0
return isPrimeMR(n)
def findPrime(n):
if n <= 2: return 2
i = n | 1
while 1:
if isPrime(i): return i
i += 2
def findNttFriendlyPrime(n, k, m=1):
a = (n >> k) + 1
i = (a << k) + 1
while 1:
if (i - 1) % m == 0:
if isPrime(i):
g = primitiveRoot(i)
ig = pow(g, i - 2, i)
return (i, g, ig) # p, g, invg
i += 1 << k
N = I()
A = LI()
dp = defaultdict(int)
ans = 1
for i in range(N):
ai = A[i]
pf = divisors(ai)
for kk in range(len(pf)-1,-1,-1):
j = pf[kk]
if dp[j]:
k = dp[j]+1
ans = max(ans,k)
dp[ai] = max(k,dp[ai])
dp[ai] = max(1,dp[ai])
#print(dp)
print(ans)