結果
| 問題 |
No.2504 NOT Path Painting
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-21 11:09:20 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,000 bytes |
| コンパイル時間 | 698 ms |
| コンパイル使用メモリ | 82,436 KB |
| 実行使用メモリ | 72,584 KB |
| 最終ジャッジ日時 | 2024-09-22 16:39:25 |
| 合計ジャッジ時間 | 3,328 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | RE * 21 |
ソースコード
from collections import deque
from typing import List
P = 998244353
def inv(n):
return pow(n, P - 2, P)
def edge_num(n: int):
return (n * (n + 1)) >> 1
def solve(n: int, g: List[List[int]]):
m = edge_num(n)
inv_m = inv(m)
par_ = [0] * n
siz_ = [1] * n
def precalc(u: int, p: int):
par_[u] = p
for v in g[u]:
if v != p:
siz_[u] += precalc(v, u)
return siz_[u]
precalc(0, -1)
# u の親を p としたときの、部分木 u のサイズ
def subtree_size(u: int, p: int):
if par_[u] == p:
return siz_[u]
else:
return n - siz_[p]
# 解説の t (隣接点が ng1 の場合)
def calc_t_1(u: int, ng1: int):
return n - subtree_size(ng1, u)
# 解説の t (隣接点が ng1, ng2 の場合)
def calc_t_2(u: int, ng1: int, ng2: int):
return n - subtree_size(ng1, u) - subtree_size(ng2, u)
ans_f = [0] * n
for x in range(n):
# u_{x,x}(x)
u_xx_x = m - sum(edge_num(subtree_size(y, x)) for y in g[x])
ans_f[x] = m * inv(m - u_xx_x) % P
ans_g = [[0] * n for _ in range(n)]
# par[x][y] := x を根とする木における y の親
par = [[-1] * n for _ in range(n)]
# x, y, A_{x,y}, B_{x,y}
dq = deque()
for x in range(n):
ans_g[x][x] = ans_f[x]
# s_x(x)
s_x_x = n
# u_{x,x}(x)
u_xx_x = edge_num(n) - sum(edge_num(subtree_size(y, x)) for y in g[x])
for y in g[x]:
# s_x(y)
s_x_y = subtree_size(y, x)
# u_{x,y}(x)
u_xy_x = u_xx_x - s_x_y * (s_x_x - s_x_y)
Axy = u_xy_x * ans_f[x] % P
Bxy = 0
par[x][y] = x
dq.append((x, y, Axy, Bxy))
while dq:
x, y, Axy, Bxy = dq.popleft()
# x を根とした木における y の親
par_y = par[x][y]
# s_x(y)
s_x_y = subtree_size(y, par_y)
# u_{x,y}(y)
u_xy_y = edge_num(s_x_y) - sum(edge_num(subtree_size(w, y)) for w in g[y] if w != par_y)
# t_{x,y}(y)
t_xy_y = s_x_y
ans_g[x][y] = (Axy + u_xy_y * ans_f[y] + Bxy) % P
prev_z, z = y, par_y
while z != x:
next_z = par[x][z]
# t_{x,y}(z)
# z の 1 つ前と 1 つ後が N_{x,y}(z) に含まれる頂点
t_xy_z = calc_t_2(z, prev_z, next_z)
ans_g[x][y] = (ans_g[x][y] + t_xy_y * t_xy_z * ans_g[y][z]) % P
prev_z, z = z, next_z
# t_{x,y}(x)
t_xy_x = calc_t_1(x, prev_z)
ans_g[x][y] = ((1 + ans_g[x][y] * inv_m) % P * inv(1 - (t_xy_x * t_xy_y * inv_m))) % P
for w in g[y]:
if w == par_y:
continue
# t_{x,w}(x)
t_xw_x = t_xy_x
# s_{x}(w)
s_x_w = subtree_size(w, y)
# t_{x,w}(y)
t_xw_y = t_xy_y - s_x_w
# u_{x,w}(y)
u_xw_y = u_xy_y - s_x_w * (s_x_y - s_x_w)
# A_{x,w}
Axw = (Axy + u_xw_y * ans_f[y]) % P
# B_{x,w}
Bxw = (Bxy + t_xw_y * t_xw_x * ans_g[x][y]) % P
# Bxw に sum_{z in Pxy-{y}} t_{x,w}(y) * t_{x,w}(z) * g(y,z) を足して更新
prev_z, z = y, par_y
while z != x:
next_z = par[x][z]
# t_{x,w}(z)
t_xw_z = calc_t_2(z, prev_z, next_z)
# t_{x,w}(y) * t_{x,w}(z) * g(y, z)
Bxw = (Bxw + t_xw_y * t_xw_z * ans_g[y][z]) % P
prev_z, z = z, next_z
par[x][w] = y
dq.append((x, w, Axw, Bxw))
ans = 1
for x in range(n):
for y in range(x + 1):
ans = (ans + ans_g[x][y] * inv_m) % P
print(ans)
n = int(input())
g = [[] for _ in range(n)]
for _ in range(n - 1):
u, v = map(int, input().split())
u -= 1
v -= 1
g[u].append(v)
g[v].append(u)
solve(n, g)