結果
問題 | No.439 チワワのなる木 |
ユーザー | vwxyz |
提出日時 | 2023-02-22 16:11:48 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 1,808 ms / 5,000 ms |
コード長 | 22,269 bytes |
コンパイル時間 | 240 ms |
コンパイル使用メモリ | 14,848 KB |
実行使用メモリ | 104,840 KB |
最終ジャッジ日時 | 2024-07-22 17:46:01 |
合計ジャッジ時間 | 14,043 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 34 ms
12,800 KB |
testcase_01 | AC | 33 ms
12,800 KB |
testcase_02 | AC | 32 ms
12,928 KB |
testcase_03 | AC | 31 ms
12,800 KB |
testcase_04 | AC | 33 ms
12,928 KB |
testcase_05 | AC | 32 ms
12,672 KB |
testcase_06 | AC | 33 ms
12,672 KB |
testcase_07 | AC | 36 ms
12,800 KB |
testcase_08 | AC | 33 ms
12,800 KB |
testcase_09 | AC | 32 ms
12,800 KB |
testcase_10 | AC | 32 ms
12,928 KB |
testcase_11 | AC | 33 ms
12,800 KB |
testcase_12 | AC | 32 ms
12,928 KB |
testcase_13 | AC | 35 ms
12,800 KB |
testcase_14 | AC | 36 ms
12,800 KB |
testcase_15 | AC | 44 ms
13,056 KB |
testcase_16 | AC | 52 ms
13,568 KB |
testcase_17 | AC | 47 ms
13,184 KB |
testcase_18 | AC | 1,109 ms
64,860 KB |
testcase_19 | AC | 1,014 ms
62,384 KB |
testcase_20 | AC | 1,453 ms
80,844 KB |
testcase_21 | AC | 382 ms
32,024 KB |
testcase_22 | AC | 343 ms
29,148 KB |
testcase_23 | AC | 1,794 ms
89,308 KB |
testcase_24 | AC | 1,808 ms
88,100 KB |
testcase_25 | AC | 1,537 ms
86,048 KB |
testcase_26 | AC | 1,438 ms
104,840 KB |
testcase_27 | AC | 1,210 ms
94,880 KB |
ソースコード
import sys readline=sys.stdin.readline class Graph: def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph: self.graph=graph self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def MIV_DFS(self,initial_vertices=None,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): if initial_vertices==None: initial_vertices=[s for s in range(self.V)] seen=[False]*self.V finished=[False]*self.V if bipartite_graph: bg=[None]*self.V cnt=-1 if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if bipartite_graph or unweighted_dist: uwd=[self.inf]*self.V if weighted_dist: wd=[self.inf]*self.V for s in initial_vertices: if seen[s]: continue if bipartite_graph: cnt+=1 bg[s]=(cnt,0) if linked_components: lc.append([]) if bipartite_graph or unweighted_dist: uwd[s]=0 if weighted_dist: wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc[-1].append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if bipartite_graph: bg[y]=(cnt,bg[x][1]^1) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if directed_acyclic and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg_=bg bg=[[[],[]] for i in range(cnt+1)] for tpl in self.edges: i,j=tpl[:2] if self.weighted else tpl if not bg_[i][1]^bg_[j][1]: bg[bg_[i][0]]=False for x in range(self.V): if bg[bg_[x][0]]: bg[bg_[x][0]][bg_[x][1]].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def SIV_BFS(self,s,bfs_tour=False,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V seen[s]=True if bfs_tour: bt=[s] if linked_components: lc=[s] if parents: ps=[None]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 queue=deque([s]) while queue: x=queue.popleft() for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: seen[y]=True queue.append(y) if bfs_tour: bt.append(y) if linked_components: lc.append(y) if parents: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d if bipartite_graph: bg=[[],[]] for tpl in self.edges: i,j=tpl[:2] if self.weighted else tpl if uwd[i]==self.inf or uwd[j]==self.inf: continue if not uwd[i]%2^uwd[j]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bfs_tour: retu+=(bt,) if bipartite_graph: retu+=(bg,) if linked_components: retu+=(lc,) if parents: retu+=(ps,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def MIV_BFS(self,initial_vertices=None,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False): if initial_vertices==None: initial_vertices=[i for i in range(self.V)] seen=[False]*self.V if bipartite_graph: bg=[None]*self.V cnt=-1 if linked_components: lc=[] if parents: ps=[None]*self.V if unweighted_dist: uwd=[self.inf]*self.V if weighted_dist: wd=[self.inf]*self.V for s in initial_vertices: if seen[s]: continue seen[s]=True if bipartite_graph: cnt+=1 bg[s]=(cnt,0) if linked_components: lc.append([s]) if unweighted_dist: uwd[s]=0 if weighted_dist: wd[s]=0 queue=deque([s]) while queue: x=queue.popleft() for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: seen[y]=True queue.append(y) if bipartite_graph: bg[y]=(cnt,bg[x][1]^1) if linked_components: lc[-1].append(y) if parents: ps[y]=x if unweighted_dist: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d if bipartite_graph: bg_=bg bg=[[[],[]] for i in range(cnt+1)] for tpl in self.edges: i,j=tpl[:2] if self.weighted else tpl if not bg_[i][1]^bg_[j][1]: bg[bg_[i][0]]=False for x in range(self.V): if bg[bg_[x][0]]: bg[bg_[x][0]][bg_[x][1]].append(x) retu=() if bipartite_graph: retu+=(bg,) if linked_components: retu+=(lc,) if parents: retu=(ps,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def Build_Approach(self,s): self.approach_parents,self.approach_depth=self.SIV_DFS(s,parents=True,unweighted_dist=True) self.approach_parents[s]=s self.approach_PD=Path_Doubling(self.V,self.approach_parents) self.approach_PD.Build_Next() def Approach(self,x,y): if x==y: return None if self.approach_depth[x]>=self.approach_depth[y]: return self.approach_parents[x] retu=self.approach_PD.Permutation_Doubling(y,self.approach_depth[y]-self.approach_depth[x]-1) if self.approach_parents[retu]==x: return retu else: return self.approach_parents[x] def Build_Rerooting(self,s,f,f_merge,subtree=False): self.rerooting_s=s self.rerooting_f=f self.rerooting_f_merge=f_merge self.subtree=subtree if self.subtree: parents,postorder,preorder,self.rerooting_depth=self.SIV_DFS(s,parents=True,postorder=True,preorder=True,unweighted_dist=True) parents[s]=s self.rerooting_PD=Path_Doubling(self.V,parents) self.rerooting_PD.Build_Next() parents[s]=None else: parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True) self.rerooting_lower_dp=[None]*self.V for x in postorder: children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]] self.rerooting_lower_dp[x]=self.rerooting_f_merge(x,[self.rerooting_f(y,self.rerooting_lower_dp[y]) for y in children]) self.rerooting_upper_dp=[None]*self.V for x in preorder: children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]] left_accumule_f=[None]*(len(children)+1) right_accumule_f=[None]*(len(children)+1) left_accumule_f[0]=self.rerooting_f_merge(x,[]) for i in range(1,len(children)+1): left_accumule_f[i]=self.rerooting_f_merge(x,[left_accumule_f[i-1],self.rerooting_f(children[i-1],self.rerooting_lower_dp[children[i-1]])]) right_accumule_f[len(children)]=self.rerooting_f_merge(x,[]) for i in range(len(children)-1,-1,-1): right_accumule_f[i]=self.rerooting_f_merge(x,[right_accumule_f[i+1],self.rerooting_f(children[i],self.rerooting_lower_dp[children[i]])]) for i in range(len(children)): if parents[x]==None: self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1]])) else: self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1],self.rerooting_upper_dp[x]])) if self.subtree: self.rerooting_parents=parents def Rerooting(self,root,subtree=None): if self.subtree and root!=subtree: if self.rerooting_depth[subtree]>=self.rerooting_depth[root]: x=self.rerooting_parents[subtree] else: x=self.rerooting_PD.Permutation_Doubling(root,self.rerooting_depth[root]-self.rerooting_depth[subtree]-1) if self.rerooting_parents[x]!=subtree: x=self.rerooting_parents[subtree] if self.rerooting_parents[subtree]==x: retu=self.rerooting_f(subtree,self.rerooting_lower_dp[subtree]) else: retu=self.rerooting_upper_dp[x] else: if root==self.rerooting_s: retu=self.rerooting_f(root,self.rerooting_lower_dp[root]) else: retu=self.rerooting_f(root,self.rerooting_f_merge(root,[self.rerooting_lower_dp[root],self.rerooting_upper_dp[root]])) return retu def XOR_Basis(lst): xor_basis=[] triangulation=[] for i,x in enumerate(lst): xx=x for j,xb in enumerate(triangulation): if xx>xx^xb: xx=xx^xb if xx: xor_basis.append(x) for j in range(len(triangulation)): if triangulation[j]^xx<triangulation[j]: triangulation[j]^=xx triangulation.append(xx) return xor_basis,triangulation class Path_Doubling: def __init__(self,N,permutation,lst=None,f=None,e=None): self.N=N self.permutation=permutation self.lst=lst self.f=f self.e=e def Build_Next(self,K=None): if K==None: K=self.N self.k=K.bit_length() self.permutation_doubling=[[self.permutation[n]] for n in range(self.N)] if self.lst!=None: self.doubling=[[self.lst[n]] for n in range(self.N)] for i in range(1,self.k): for n in range(self.N): self.permutation_doubling[n].append(self.permutation_doubling[self.permutation_doubling[n][i-1]][i-1]) if self.f!=None: self.doubling[n].append(self.f(self.doubling[n][i-1],self.doubling[self.permutation_doubling[n][i-1]][i-1])) def Permutation_Doubling(self,N,K): if K<0: return N for i in range(self.k): if K>>i&1: N=self.permutation_doubling[N][i] return N def Doubling(self,N,K): if K<0: return self.e retu=self.e for i in range(self.k): if K>>i&1: retu=self.f(retu,self.doubling[N][i]) N=self.permutation_doubling[N][i] return retu N=int(readline()) S=readline().rstrip() edge=[] for n in range(N-1): a,b=map(int,readline().split()) a-=1;b-=1 edge.append((a,b)) def f(x,tpl): A,B=tpl if S[x]=="c": A+=1 else: B+=1 return A,B def f_merge(x,lst): A,B=0,0 for a,b in lst: A+=a B+=b return A,B G=Graph(N,edges=edge) G.Build_Rerooting(0,f,f_merge,subtree=True) C=S.count("c") W=S.count("w") ans=W*C*(W-1) for x in range(N): if S[x]=="c": continue for y in G.graph[x]: C,W=G.Rerooting(x,y) ans-=C*W print(ans)