結果

問題 No.2201 p@$$w0rd
ユーザー tipstar0125tipstar0125
提出日時 2023-02-23 15:51:42
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 43 ms / 2,000 ms
コード長 4,070 bytes
コンパイル時間 184 ms
コンパイル使用メモリ 13,312 KB
実行使用メモリ 12,416 KB
最終ジャッジ日時 2024-07-23 11:11:22
合計ジャッジ時間 2,292 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 42 ms
12,288 KB
testcase_01 AC 40 ms
12,416 KB
testcase_02 AC 40 ms
12,288 KB
testcase_03 AC 41 ms
12,416 KB
testcase_04 AC 43 ms
12,288 KB
testcase_05 AC 41 ms
12,416 KB
testcase_06 AC 43 ms
12,416 KB
testcase_07 AC 41 ms
12,416 KB
testcase_08 AC 41 ms
12,288 KB
testcase_09 AC 41 ms
12,416 KB
testcase_10 AC 42 ms
12,288 KB
testcase_11 AC 41 ms
12,416 KB
testcase_12 AC 42 ms
12,288 KB
testcase_13 AC 42 ms
12,416 KB
testcase_14 AC 43 ms
12,416 KB
testcase_15 AC 42 ms
12,288 KB
testcase_16 AC 43 ms
12,288 KB
testcase_17 AC 42 ms
12,288 KB
testcase_18 AC 42 ms
12,288 KB
testcase_19 AC 41 ms
12,288 KB
testcase_20 AC 42 ms
12,288 KB
testcase_21 AC 42 ms
12,288 KB
testcase_22 AC 41 ms
12,288 KB
testcase_23 AC 42 ms
12,416 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from __future__ import annotations

import array
import bisect
import fractions
import heapq
import itertools
import math
import random
import re
import string
import sys
import time
from collections import defaultdict, deque
from functools import lru_cache

sys.setrecursionlimit(10**6)
INF = 10**20
MOD = 10**9 + 7


def read_int_list():
    return list(map(int, input().split()))


def read_int():
    return int(input())


def read_str_list():
    return list(input().split())


def read_str():
    return input()


def is_prime(n: int) -> bool:
    if n < 2:
        return False
    i = 2
    ok = True
    while i * i <= n:
        if n % i == 0:
            ok = False
        i += 1
    return ok


def eratosthenes(n: int) -> list[bool]:

    is_prime_list = ([False, True] * (n // 2 + 1))[0 : n + 1]
    is_prime_list[1] = False
    is_prime_list[2] = True
    for i in range(3, n + 1, 2):
        if not (is_prime_list[i]):
            continue
        if i * i > n:
            break
        for k in range(i * i, n + 1, i):
            is_prime_list[k] = False
    return is_prime_list


def legendre(n: int, p: int) -> int:
    cnt = 0
    pp = p
    while pp <= n:
        cnt += n // pp
        pp *= p

    return cnt


def prime_factorize(n: int) -> defaultdict[int, int]:
    nn = n
    i = 2
    d: defaultdict[int, int] = defaultdict(int)
    while i * i <= n:
        while nn % i == 0:
            d[i] += 1
            nn //= i
        i += 1
    if nn != 1:
        d[nn] += 1
    return d


def make_divisors(n: int) -> list[int]:
    i = 1
    ret = []
    while i * i <= n:
        if n % i == 0:
            ret.append(i)
            if i != n // i:
                ret.append(n // i)
        i += 1
    ret.sort()
    return ret


def gcd(a: int, b: int) -> int:

    if a == 0:
        return b
    else:
        return gcd(b % a, a)


def lcm(a: int, b: int) -> int:
    return a * b // gcd(a, b)


def align_heap(A: list[int], start: int, end: int):
    k = start
    while True:
        if 2 * k + 2 < end:
            p = A[k]
            l = A[2 * k + 1]
            r = A[2 * k + 2]
            m = max(p, l, r)
            if m == p:
                break
            elif m == l:
                A[k], A[2 * k + 1] = A[2 * k + 1], A[k]
                k = 2 * k + 1
            else:
                A[k], A[2 * k + 2] = A[2 * k + 2], A[k]
                k = 2 * k + 2

        elif 2 * k + 1 < end:
            p = A[k]
            l = A[2 * k + 1]
            m = max(p, l)
            if m == p:
                break
            else:
                A[k], A[2 * k + 1] = A[2 * k + 1], A[k]
                k = 2 * k + 1
        else:
            break


def build_heap(A: list[int]):
    N = len(A)
    for x in range(N // 2 - 1, -1, -1):
        align_heap(A, x, N)


def heap_sort(A: list[int], M: int):
    build_heap(A)
    N = len(A)
    for i in range(N - 1, 0, -1):
        A[0], A[i] = A[i], A[0]
        align_heap(A, 0, i)
        if i == M:
            print(*A)
    print(*A)


@lru_cache
def f(x: int) -> int:
    if x == 0:
        return 0
    elif x == 1:
        return 1
    return f(x - 1) + f(x - 2)


def dfs(pos: int, G: list[list[int]], visited: list[bool], is_chosen: list[bool]):
    ok = True
    for nxt in G[pos]:
        if not visited[nxt]:
            visited[nxt] = True
            dfs(nxt, G, visited, is_chosen)
            ok &= not is_chosen[nxt]
    is_chosen[pos] = ok


def solve():

    S = read_str()
    cnt1 = 0
    cnt2 = 0
    for s in S:
        if s == "l" or s == "o":
            cnt1 += 1
        if s == "a" or s == "s":
            cnt2 += 1
    num1 = 0
    for i in range(1, cnt1 + 1):
        num1 += len(list(itertools.combinations(range(cnt1), i)))
    num2 = 0
    for i in range(1, cnt2 + 1):
        num2 += len(list(itertools.combinations(range(cnt2), i)))
    if len(S) == cnt1 + cnt2:
        print(max(num1 * num2 - 1, 0))
    else:
        print(num1 * num2)


def main():
    solve()
    # t = read_int()
    # for _ in range(t):
    #     solve()


main()
0