結果
問題 | No.2225 Treasure Searching Rod (Easy) |
ユーザー | Yourein |
提出日時 | 2023-02-24 21:37:32 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 5,407 bytes |
コンパイル時間 | 10,739 ms |
コンパイル使用メモリ | 484,572 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-13 05:13:03 |
合計ジャッジ時間 | 11,855 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
#include <iostream> #include <iomanip> #include <cmath> #include <algorithm> #include <string> #include <vector> #include <map> #include <unordered_map> #include <set> #include <unordered_set> #include <queue> #include <stack> #include <numeric> #include <cassert> #include <climits> #include <limits> #include <typeinfo> #if __has_include(<boost/range/combine.hpp>) #include <boost/range/combine.hpp> //Zip function for C++ #endif #if __has_include(<boost/multiprecision/cpp_int.hpp>) #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using pyint = boost::multiprecision::cpp_int; using i128 = boost::multiprecision::int128_t; using i256 = boost::multiprecision::int256_t; using i512 = boost::multiprecision::int512_t; using i1024 = boost::multiprecision::int1024_t; using f50 = boost::multiprecision::cpp_dec_float_50; using f100 = boost::multiprecision::cpp_dec_float_100; #endif //Binary Indexed Tree // #include<ext/pb_ds/assoc_container.hpp> // #include<ext/pb_ds/tree_policy.hpp> // #include<ext/pb_ds/tag_and_trait.hpp> // using namespace __gnu_pbds; //Binary Indexed Tree using i32 = int32_t; using i64 = int64_t; using ll = long long; using ull = unsigned long long; using ld = long double; using namespace std; #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() //iostream operator template <typename T> istream &operator>>(istream &is, vector<T> &x){for (auto &y:x){is >> y;} return is;} template <typename T> ostream &operator<<(ostream &os, vector<T> &x){for (size_t e = 0; e < x.size(); e++){os << x[e] << (e==x.size()-1?"":" ");} return os;} template <class T, class S> istream &operator>>(istream &is, pair<T, S> &x){is >> x.first >> x.second; return is;} template <class T, class S> ostream &operator<<(ostream &os, pair<T, S> &x){os << x.first << " " << x.second; return os;} //iostream operator namespace cpio{ //Debug out void dout(){cerr << "\n";} template<typename T, typename... Ts> void dout(const T& a, const Ts&... b){cerr << a; (cerr << ... << (cerr << ' ', b)); cerr << "\n";} //Yes or No void yon(bool yorn, string Y = "Yes", string N = "No"){cout << (yorn?Y:N) << endl;} }; using namespace cpio; namespace cpmath{ //Math library for Competitive-Programming constexpr ll mod97 = 1000000007; constexpr ll mod99 = 1000000009; constexpr ll mod89 = 998244353; constexpr double pi = acos(-1); const int imax = numeric_limits<int>::max(); const long long llmax = numeric_limits<long long>::max(); const int safeimax = numeric_limits<int>::max()/2; const long long safellmax = numeric_limits<long long>::max()/2; constexpr int DX4[4] = {1, 0, -1, 0}; constexpr int DY4[4] = {0, 1, 0, -1}; constexpr int DX8[8] = {-1, 0, 1, -1, 1, -1, 0, 1}; constexpr int DY8[8] = {-1, -1, -1, 0, 0, 1, 1, 1}; //Return a!/(b-1)! = a*(a-1)*...*(b+1)*b, O(a) ll factorial(ll a, ll b = -1, const ll fmod = -1){ ll ans = 1; if (fmod > 1) { if (b == -1) for (ll i = a; i > 1; i--) ans = ((ans%fmod)*(i%fmod))%fmod; else for (ll i = a; i >= b; i--) ans = ((ans%fmod)*(i%fmod))%fmod; } else{ if (b == -1) for (ll i = a; i > 1; i--) ans = ans*i; else for(ll i = a; i >= b; i--) ans = ans*i; } return ans; } //Return m^p, O(log p) ll fastpow(ll m, ll p){ if (p == 0) return 1; if (p%2 == 0){ll t = fastpow(m, p/2); return t*t;} return m*fastpow(m, p-1); } ll modpow(ll m, ll p, const ll fmod){ if (p == 0) return 1; if (m%fmod == 0) return 0; if (p%2 == 0){ll t = modpow(m, p/2, fmod); return (t*t)%fmod;} return (m*modpow(m, p-1, fmod))%fmod; } ld dtor(const ld deg){return deg*(pi/(ld)180);} template<class T> double fmedian(vector<T> a){return (static_cast<double>(a[((int(a.size())+1)/2)-1])+static_cast<double>(a[(int(a.size())/2)]))/2;} template<class T> pair<long long, long long> imedian(vector<T> a) { return { (static_cast<long long>(a[((int(a.size())+1)/2)-1])+static_cast<long long>(a[(int(a.size())/2)]))/2LL, (static_cast<long long>(a[((int(a.size())+1)/2)-1])+static_cast<long long>(a[(int(a.size())/2)])+1)/2LL, }; } long long inversed(ll n, const ll mod){return cpmath::modpow(n, mod-2, mod);} } using cpmath::mod89; using cpmath::mod97; using cpmath::mod99; using cpmath::imax; using cpmath::llmax; using cpmath::safeimax; using cpmath::safellmax; using cpmath::DX4; using cpmath::DY4; //using cpmath::DX8; //using cpmath::DY8; // using gtree = tree<T, null_type, greater<T>, rb_tree_tag, tree_order_statistics_node_update>; int main() { int h, w, k; cin >> h >> w >> k; vector<vector<long long>> val(h, vector<long long>(w, 0)); for (int i = 0; i < k; i++) { int xi, yi, vi; cin >> xi >> yi >> vi; xi--, yi--; val[xi][yi] = vi; } ll ans = 0; for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { for (int x = 0; x < h; x++) { for (int y = 0; y < w; y++) { if (x+y >= i+j && x-y >= i-j) { ans += val[x][y]; ans %= mod89; } } } } } cout << ans << endl; }