結果
問題 | No.2231 Surprising Flash! |
ユーザー | chineristAC |
提出日時 | 2023-02-24 21:48:19 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 11,271 bytes |
コンパイル時間 | 567 ms |
コンパイル使用メモリ | 82,352 KB |
実行使用メモリ | 232,812 KB |
最終ジャッジ日時 | 2024-09-13 07:28:54 |
合計ジャッジ時間 | 29,652 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 80 ms
84,740 KB |
testcase_01 | AC | 130 ms
86,856 KB |
testcase_02 | AC | 297 ms
88,892 KB |
testcase_03 | AC | 930 ms
96,348 KB |
testcase_04 | AC | 258 ms
88,516 KB |
testcase_05 | AC | 82 ms
78,236 KB |
testcase_06 | AC | 258 ms
88,264 KB |
testcase_07 | AC | 126 ms
87,664 KB |
testcase_08 | AC | 177 ms
88,232 KB |
testcase_09 | AC | 96 ms
83,440 KB |
testcase_10 | AC | 79 ms
76,560 KB |
testcase_11 | AC | 92 ms
87,832 KB |
testcase_12 | AC | 95 ms
88,776 KB |
testcase_13 | AC | 1,006 ms
232,812 KB |
testcase_14 | AC | 971 ms
196,252 KB |
testcase_15 | AC | 88 ms
81,684 KB |
testcase_16 | AC | 948 ms
176,012 KB |
testcase_17 | AC | 968 ms
187,476 KB |
testcase_18 | AC | 970 ms
195,636 KB |
testcase_19 | AC | 965 ms
195,508 KB |
testcase_20 | AC | 970 ms
195,372 KB |
testcase_21 | AC | 985 ms
197,512 KB |
testcase_22 | AC | 967 ms
195,500 KB |
testcase_23 | AC | 972 ms
195,888 KB |
testcase_24 | AC | 976 ms
196,972 KB |
testcase_25 | AC | 972 ms
197,108 KB |
testcase_26 | AC | 973 ms
196,564 KB |
testcase_27 | AC | 975 ms
195,312 KB |
testcase_28 | AC | 985 ms
195,652 KB |
testcase_29 | AC | 982 ms
205,400 KB |
testcase_30 | AC | 987 ms
205,868 KB |
testcase_31 | AC | 989 ms
204,668 KB |
testcase_32 | AC | 987 ms
205,912 KB |
testcase_33 | AC | 981 ms
206,716 KB |
testcase_34 | TLE | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(_f,_g,limit): f = [v for v in _f] g = [v for v in _g] l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) return h[:limit] mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd,log input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def Z_algorithm(s): N = len(s) Z_alg = [0]*N Z_alg[0] = N i = 1 j = 0 while i < N: while i+j < N and s[j] == s[i+j]: j += 1 Z_alg[i] = j if j == 0: i += 1 continue k = 1 while i+k < N and k + Z_alg[k]<j: Z_alg[i+k] = Z_alg[k] k += 1 i += k j -= k return Z_alg def solve(N,M,S,T): Sa = S.replace("?","a") if T in Sa: return Sa """ Sの?を置き換える際は ・かならず?->a以外にするとこがある(->?を置き換える部分がある) S[i:i+M] と S[j:j+M] (i < j) の置き換えを比較するとき、 i+M < j のとき、jが小さい S[i:j] に ? があった場合、jが小さい ない場合、S[j:i+M] を T[j-i:M] と T[:i+M-j] の比較 これで決着がつかない場合、iが小さい """ wild_cnt = [0] + [S[i]=="?" for i in range(N)] for i in range(N): wild_cnt[i+1] += wild_cnt[i] T_Z = Z_algorithm(T) def compare(i,j): if i+M <= j: return j cnt = wild_cnt[j-1] - wild_cnt[i-1] if cnt > 0: return j if T_Z[j-i]==M+i-j: return i if T[j-i+T_Z[j-i]] > T[T_Z[j-i]]: return j return i hash = [k+1 for k in range(26)] f = [0] * N for i in range(N): if S[i]!="?": f[i] = hash[ord(S[i])-ord("a")] g = [0] * M for i in range(M): if T[i]!="?": g[i] = hash[ord(T[i])-ord("a")] p = convolution([f[i]**3 % mod for i in range(N)],g[::-1]) q = convolution([f[i]**2 % mod for i in range(N)],[g[i]**2 % mod for i in range(M)][::-1]) r = convolution([f[i] % mod for i in range(N)],[g[i]**3 % mod for i in range(M)][::-1]) cand = [] for i in range(N-M+1): if (p[i+M-1]-2*q[i+M-1]+r[i+M-1]) % mod == 0: cand.append(i) if not cand: return -1 k = cand[0] for i in cand[1:]: k = compare(k,i) res = S[:k].replace("?","a") + T + S[k+M:].replace("?","a") return res for _ in range(int(input())): N,M = mi() S = input().rstrip() T = input().rstrip() print(solve(N,M,S,T))