結果
| 問題 |
No.2230 Good Omen of White Lotus
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-24 22:28:01 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 141 ms / 2,000 ms |
| コード長 | 12,146 bytes |
| コンパイル時間 | 2,486 ms |
| コンパイル使用メモリ | 205,640 KB |
| 最終ジャッジ日時 | 2025-02-10 21:33:50 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 44 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename Monoid>
struct Segment_Tree {
using M = typename Monoid::V;
int n, m;
vector<M> seg;
// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
Segment_Tree(const vector<M> &v) : n(v.size()) {
m = 1;
while (m < n) m <<= 1;
seg.assign(2 * m, Monoid::id);
copy(begin(v), end(v), begin(seg) + m);
for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
Segment_Tree(int n, const M &x) : Segment_Tree(vector<M>(n, x)) {}
void update(int i, const M &x, bool apply = false) {
seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x;
i += m;
while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
M query(int l, int r) const {
l = max(l, 0), r = min(r, n);
M L = Monoid::id, R = Monoid::id;
l += m, r += m;
while (l < r) {
if (l & 1) L = Monoid::merge(L, seg[l++]);
if (r & 1) R = Monoid::merge(seg[--r], R);
l >>= 1, r >>= 1;
}
return Monoid::merge(L, R);
}
M operator[](int i) const { return seg[i + m]; }
template <typename C>
int find_subtree(int i, const C &check, M &x, int type) const {
while (i < m) {
M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]);
if (check(nxt)) {
i = 2 * i + type;
} else {
x = nxt;
i = 2 * i + (type ^ 1);
}
}
return i - m;
}
// check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n)
template <typename C>
int find_first(int l, const C &check) const {
M L = Monoid::id;
int a = l + m, b = 2 * m;
while (a < b) {
if (a & 1) {
M nxt = Monoid::merge(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, 0);
L = nxt;
a++;
}
a >>= 1, b >>= 1;
}
return n;
}
// check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1)
template <typename C>
int find_last(int r, const C &check) const {
M R = Monoid::id;
int a = m, b = r + m;
while (a < b) {
if ((b & 1) || a == 1) {
M nxt = Monoid::merge(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, 1);
R = nxt;
}
a >>= 1, b >>= 1;
}
return -1;
}
};
// sum
template <typename T>
struct Plus_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return l + r; };
static const V id;
};
template <typename T>
const T Plus_Monoid<T>::id = 0;
// min
template <typename T>
struct Min_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return min(l, r); };
static const V id;
};
template <typename T>
const T Min_Monoid<T>::id = numeric_limits<T>::max();
// max
template <typename T>
struct Max_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return max(l, r); };
static const V id;
};
template <typename T>
const T Max_Monoid<T>::id = numeric_limits<T>::min();
// min count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(V l, V r) {
if (l.first < r.first) return l;
if (l.first > r.first) return r;
return V(l.first, l.second + r.second);
}
static const V id;
};
template <typename T, typename S>
const pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max(), 0);
// max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(V l, V r) {
if (l.first > r.first) return l;
if (l.first < r.first) return r;
return V(l.first, l.second + r.second);
}
static const V id;
};
template <typename T, typename S>
const pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::min(), 0);
// 一次関数 ax+b の合成 (左から順に作用)
template <typename T>
struct Affine_Monoid {
using V = pair<T, T>;
static constexpr V merge(V l, V r) { return V(l.first * r.first, l.second * r.first + r.second); };
static const V id;
};
template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);
// モノイドの直積
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
using V1 = typename Monoid_1::V;
using V2 = typename Monoid_2::V;
using V = pair<V1, V2>;
static constexpr V merge(V l, V r) { return V(Monoid_1::merge(l.first, r.first), Monoid_2::merge(l.second, r.second)); }
static const V id;
};
template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);
// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, O r) { return l + r; };
};
// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, O r) { return l + r; };
};
// range add range min count (T:最小値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
using Monoid = Min_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};
// range add range max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
using Monoid = Max_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};
// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
using Operator = Affine_Monoid<T>;
using M = pair<T, T>;
using O = pair<T, T>;
static constexpr M merge(M l, O r) { return M(r.first * l.first + r.second * l.second, l.second); };
};
int main() {
int H, W, N, P;
cin >> H >> W >> N >> P;
vector<vector<int>> ys(H);
rep(i, N) {
int x, y;
cin >> x >> y;
x--, y--;
ys[x].eb(y);
}
Segment_Tree<Max_Monoid<int>> seg(W, 0);
rep(i, H) {
sort(all(ys[i]));
each(y, ys[i]) {
seg.update(y, seg.query(0, y + 1) + 1, true); //
}
}
int x = seg.query(0, W);
mint ng = (mint(P - 1) / mint(P)).pow(H + W - 3 - x) * (mint(P - 2) / mint(P)).pow(x);
cout << -ng + 1 << '\n';
}