結果
| 問題 |
No.2231 Surprising Flash!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-24 22:41:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 552 ms / 4,000 ms |
| コード長 | 13,327 bytes |
| コンパイル時間 | 2,075 ms |
| コンパイル使用メモリ | 214,924 KB |
| 最終ジャッジ日時 | 2025-02-10 21:52:40 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 44 |
ソースコード
#include <bits/stdc++.h>
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % P)} {}
constexpr int norm(int x) const {
if (x < 0) {
x += P;
}
if (x >= P) {
x -= P;
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(P - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, P - 2);
}
constexpr MInt &operator*=(MInt rhs) {
x = 1LL * x * rhs.x % P;
return *this;
}
constexpr MInt &operator+=(MInt rhs) {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 998244353;
using Z = MInt<P>;
std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};
template<int P>
constexpr MInt<P> findPrimitiveRoot() {
MInt<P> i = 2;
int k = __builtin_ctz(P - 1);
while (true) {
if (power(i, 1 << (k - 1)) != 1 && power(i, 1 << k) == 1) {
break;
}
i += 1;
}
return i;
}
template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();
template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};
template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i++) {
if (rev[i] < i) {
std::swap(a[i], a[rev[i]]);
}
}
if (roots<P>.size() < n) {
int k = __builtin_ctz(roots<P>.size());
roots<P>.resize(n);
while ((1 << k) < n) {
auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots<P>[2 * i] = roots<P>[i];
roots<P>[2 * i + 1] = roots<P>[i] * e;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
MInt<P> u = a[i + j];
MInt<P> v = a[i + j + k] * roots<P>[k + j];
a[i + j] = u + v;
a[i + j + k] = u - v;
}
}
}
}
template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
MInt<P> inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] *= inv;
}
}
template<int P = 998244353>
struct Poly {
using Value = MInt<P>;
std::vector<Value> a;
constexpr Poly() : a{} {}
explicit constexpr Poly(int n) : a(n) {}
template<class F>
explicit constexpr Poly(int n, F f) : a(n) {
for (int i = 0; i < n; i++) {
a[i] = f(i);
}
}
explicit constexpr Poly(const std::vector<Value> &a) : a(a) {}
explicit constexpr Poly(const std::initializer_list<Value> &a) : a(a) {}
template<class It>
explicit constexpr Poly(It first, It last) : a(first, last) {}
constexpr int size() const {
return a.size();
}
explicit constexpr operator std::vector<Value>() const {
return a;
}
constexpr Value operator[](int idx) const {
if (idx < size()) {
return a[idx];
} else {
return 0;
}
}
constexpr Value &operator[](int idx) {
return a[idx];
}
constexpr Poly shift(int k) const {
if (k >= 0) {
auto b = a;
b.insert(b.begin(), k, 0);
return Poly(b);
} else if (size() <= -k) {
return Poly();
} else {
return Poly(a.begin() + (-k), a.end());
}
}
constexpr Poly resize(int k) const {
Poly f{a};
f.a.resize(k);
return f;
}
constexpr friend Poly operator+(const Poly &a, const Poly &b) {
std::vector<Value> res(std::max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i++) {
res[i] = a[i] + b[i];
}
return Poly(res);
}
constexpr friend Poly operator-(const Poly &a, const Poly &b) {
std::vector<Value> res(std::max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i++) {
res[i] = a[i] - b[i];
}
return Poly(res);
}
constexpr friend Poly operator-(const Poly &a) {
std::vector<Value> res(a.size());
for (int i = 0; i < int(res.size()); i++) {
res[i] = -a[i];
}
return Poly(res);
}
constexpr friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
if (a.size() < b.size()) {
std::swap(a, b);
}
if (b.size() < 128) {
Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
int sz = 1, tot = a.size() + b.size() - 1;
while (sz < tot) {
sz *= 2;
}
a.a.resize(sz);
b.a.resize(sz);
dft(a.a);
dft(b.a);
for (int i = 0; i < sz; ++i) {
a.a[i] = a[i] * b[i];
}
idft(a.a);
a.resize(tot);
return a;
}
constexpr friend Poly operator*(Value a, Poly b) {
for (int i = 0; i < int(b.size()); i++) {
b[i] *= a;
}
return b;
}
constexpr friend Poly operator*(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] *= b;
}
return a;
}
constexpr Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
constexpr Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
constexpr Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator*=(Value b) {
return (*this) = (*this) * b;
}
constexpr Poly deriv() const {
if (a.empty()) {
return Poly();
}
std::vector<Value> res(size() - 1);
for (int i = 0; i < size() - 1; ++i) {
res[i] = (i + 1) * a[i + 1];
}
return Poly(res);
}
constexpr Poly integr() const {
std::vector<Value> res(size() + 1);
for (int i = 0; i < size(); ++i) {
res[i + 1] = a[i] / (i + 1);
}
return Poly(res);
}
constexpr Poly inv(int m) const {
Poly x{a[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - resize(k) * x)).resize(k);
}
return x.resize(m);
}
constexpr Poly log(int m) const {
return (deriv() * inv(m)).integr().resize(m);
}
constexpr Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + resize(k))).resize(k);
}
return x.resize(m);
}
constexpr Poly pow(int k, int m) const {
int i = 0;
while (i < size() && a[i] == 0) {
i++;
}
if (i == size() || 1LL * i * k >= m) {
return Poly(m);
}
Value v = a[i];
auto f = shift(-i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
}
constexpr Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (resize(k) * x.inv(k)).resize(k)) * CInv<2, P>;
}
return x.resize(m);
}
constexpr Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
std::reverse(b.a.begin(), b.a.end());
return ((*this) * b).shift(-(n - 1));
}
constexpr std::vector<Value> eval(std::vector<Value> x) const {
if (size() == 0) {
return std::vector<Value>(x.size(), 0);
}
const int n = std::max(int(x.size()), size());
std::vector<Poly> q(4 * n);
std::vector<Value> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = Poly{1, -x[l]};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
if (r - l == 1) {
if (l < int(ans.size())) {
ans[l] = num[0];
}
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
constexpr auto begin() const {
return a.begin();
}
constexpr auto end() const {
return a.end();
}
};
std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());
std::vector<int> zFunction(std::string s) {
int n = s.size();
std::vector<int> z(n);
z[0] = n;
int L = 0, R = 0;
for (int i = 1; i < n; i++) {
if (i > R) {
L = R = i;
while (R < n && s[R-L] == s[R]) R++;
z[i] = R-L; R--;
} else {
int k = i-L;
if (z[k] < R-i+1) z[i] = z[k];
else {
L = i;
while (R < n && s[R-L] == s[R]) R++;
z[i] = R-L; R--;
}
}
}
return z;
}
void solve() {
int n, m;
std::cin >> n >> m;
std::string s, t;
std::cin >> s >> t;
std::vector<Z> w(26);
for (int i = 0; i < 26; i++) {
w[i] = rng();
}
std::vector<Z> sum(n + 1);
for (int i = 0; i < n; i++) {
sum[i + 1] = sum[i] + (s[i] == '?' ? 0 : w[s[i] - 'a'] * w[s[i] - 'a']);
}
Poly f1(n, [&](int i) {
return s[i] == '?' ? 0 : w[s[i] - 'a'];
});
Poly f0(n, [&](int i) {
return s[i] == '?' ? 0 : 1;
});
Poly g1(m, [&](int i) {
return w[t[i] - 'a'];
});
Poly g2(m, [&](int i) {
return w[t[i] - 'a'] * w[t[i] - 'a'];
});
auto h = f0.mulT(g2) - 2 * f1.mulT(g1);
auto a = s;
for (auto &c : a) {
if (c == '?') {
c = 'a';
}
}
auto z = zFunction(t + '#' + a);
int p = -1;
int pos = -1;
for (int i = 0; i <= n - m; i++) {
Z res = h[i] + sum[i + m] - sum[i];
if (res == 0) {
int v;
if (z[m + 1 + i] == m) {
v = n;
} else {
v = i + z[m + 1 + i];
}
if (v > pos) {
p = i;
pos = v;
}
}
}
if (p == -1) {
std::cout << -1 << "\n";
return;
}
for (int i = 0; i < m; i++) {
s[p + i] = t[i];
}
for (auto &c : s) {
if (c == '?') {
c = 'a';
}
}
std::cout << s << "\n";
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t;
std::cin >> t;
while (t--) {
solve();
}
return 0;
}