結果
問題 | No.2231 Surprising Flash! |
ユーザー | hitonanode |
提出日時 | 2023-02-24 22:48:09 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 36,181 bytes |
コンパイル時間 | 5,298 ms |
コンパイル使用メモリ | 256,544 KB |
実行使用メモリ | 105,084 KB |
最終ジャッジ日時 | 2024-09-13 08:02:55 |
合計ジャッジ時間 | 21,964 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 5 ms
6,812 KB |
testcase_02 | WA | - |
testcase_03 | AC | 307 ms
6,944 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 9 ms
6,940 KB |
testcase_09 | AC | 3 ms
6,944 KB |
testcase_10 | AC | 9 ms
6,940 KB |
testcase_11 | AC | 988 ms
94,136 KB |
testcase_12 | AC | 473 ms
105,084 KB |
testcase_13 | AC | 473 ms
104,956 KB |
testcase_14 | AC | 436 ms
88,048 KB |
testcase_15 | AC | 983 ms
94,132 KB |
testcase_16 | AC | 402 ms
8,684 KB |
testcase_17 | AC | 432 ms
13,860 KB |
testcase_18 | AC | 483 ms
88,320 KB |
testcase_19 | AC | 484 ms
88,308 KB |
testcase_20 | AC | 486 ms
88,316 KB |
testcase_21 | AC | 484 ms
88,180 KB |
testcase_22 | AC | 480 ms
88,200 KB |
testcase_23 | AC | 481 ms
88,312 KB |
testcase_24 | AC | 480 ms
88,372 KB |
testcase_25 | AC | 483 ms
88,164 KB |
testcase_26 | AC | 483 ms
88,176 KB |
testcase_27 | AC | 481 ms
88,164 KB |
testcase_28 | AC | 482 ms
88,160 KB |
testcase_29 | AC | 511 ms
94,844 KB |
testcase_30 | AC | 508 ms
94,860 KB |
testcase_31 | AC | 507 ms
94,840 KB |
testcase_32 | AC | 512 ms
94,972 KB |
testcase_33 | AC | 505 ms
94,848 KB |
testcase_34 | AC | 447 ms
94,136 KB |
testcase_35 | AC | 449 ms
94,136 KB |
testcase_36 | AC | 446 ms
94,260 KB |
testcase_37 | AC | 448 ms
94,260 KB |
testcase_38 | AC | 447 ms
94,132 KB |
testcase_39 | AC | 200 ms
13,888 KB |
testcase_40 | AC | 141 ms
13,800 KB |
testcase_41 | AC | 2 ms
6,940 KB |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif template <int md> struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } MDCONST ModInt() : val_(0) {} MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } MDCONST ModInt(lint v) { _setval(v % md + md); } MDCONST explicit operator bool() const { return val_ != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val_); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val_ + md); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val_ % md); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv().val() % md); } MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; } MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; } MDCONST bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } MDCONST ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static std::vector<ModInt> facs, facinvs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } MDCONST ModInt inv() const { if (this->val_ < std::min(md >> 1, 1 << 21)) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } MDCONST ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } MDCONST ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } MDCONST ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv(); } MDCONST ModInt nPr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; using mint = ModInt<998244353>; // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); if (n == 1) return; static const int mod = MODINT::mod(); static const MODINT root = MODINT::get_primitive_root(); assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0); static std::vector<MODINT> w{1}, iw{1}; for (int m = w.size(); m < n / 2; m *= 2) { MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw; w.resize(m * 2), iw.resize(m * 2); for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv; } if (!is_inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m] * w[k]; a[i] = x + y, a[i + m] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { MODINT x = a[i], y = a[i + m]; a[i] = x + y, a[i + m] = (x - y) * iw[k]; } } } int n_inv = MODINT(n).inv().val(); for (auto &v : a) v *= n_inv; } } template <int MOD> std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); std::vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; ntt(ap, false); if (a == b) bp = ap; else ntt(bp, false); for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long garner_ntt_(int r0, int r1, int r2, int mod) { using mint2 = ModInt<nttprimes[2]>; static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val(); static const long long m01_inv_m2 = mint2(m01).inv().val(); int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2; return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod; } template <typename MODINT> std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) { if (a.empty() or b.empty()) return {}; int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; if (sz <= 16) { std::vector<MODINT> ret(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j]; } return ret; } int mod = MODINT::mod(); if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else { ntt(a, false), ntt(b, false); } for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { std::vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val(); for (int i = 0; i < m; i++) bi[i] = b[i].val(); auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod); } return a; } template <typename MODINT> std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) { return nttconv<MODINT>(a, b, false); } // F_p, p = 2^61 - 1 // https://qiita.com/keymoon/items/11fac5627672a6d6a9f6 class ModIntMersenne61 { static const long long md = (1LL << 61) - 1; long long _v; inline unsigned hi() const noexcept { return _v >> 31; } inline unsigned lo() const noexcept { return _v & ((1LL << 31) - 1); } public: static long long mod() { return md; } ModIntMersenne61() : _v(0) {} // 0 <= x < md * 2 explicit ModIntMersenne61(long long x) : _v(x >= md ? x - md : x) {} long long val() const noexcept { return _v; } ModIntMersenne61 operator+(const ModIntMersenne61 &x) const { return ModIntMersenne61(_v + x._v); } ModIntMersenne61 operator-(const ModIntMersenne61 &x) const { return ModIntMersenne61(_v + md - x._v); } ModIntMersenne61 operator*(const ModIntMersenne61 &x) const { using ull = unsigned long long; ull uu = (ull)hi() * x.hi() * 2; ull ll = (ull)lo() * x.lo(); ull lu = (ull)hi() * x.lo() + (ull)lo() * x.hi(); ull sum = uu + ll + ((lu & ((1ULL << 30) - 1)) << 31) + (lu >> 30); ull reduced = (sum >> 61) + (sum & ull(md)); return ModIntMersenne61(reduced); } ModIntMersenne61 pow(long long n) const { assert(n >= 0); ModIntMersenne61 ans(1), tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } ModIntMersenne61 inv() const { return pow(md - 2); } ModIntMersenne61 operator/(const ModIntMersenne61 &x) const { return *this * x.inv(); } ModIntMersenne61 operator-() const { return ModIntMersenne61(md - _v); } ModIntMersenne61 &operator+=(const ModIntMersenne61 &x) { return *this = *this + x; } ModIntMersenne61 &operator-=(const ModIntMersenne61 &x) { return *this = *this - x; } ModIntMersenne61 &operator*=(const ModIntMersenne61 &x) { return *this = *this * x; } ModIntMersenne61 &operator/=(const ModIntMersenne61 &x) { return *this = *this / x; } ModIntMersenne61 operator+(unsigned x) const { return ModIntMersenne61(this->_v + x); } bool operator==(const ModIntMersenne61 &x) const { return _v == x._v; } bool operator!=(const ModIntMersenne61 &x) const { return _v != x._v; } bool operator<(const ModIntMersenne61 &x) const { return _v < x._v; } // To use std::map template <class OStream> friend OStream &operator<<(OStream &os, const ModIntMersenne61 &x) { return os << x._v; } static ModIntMersenne61 randgen(bool force_update = false) { static ModIntMersenne61 b(0); if (b == ModIntMersenne61(0) or force_update) { std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution<long long> d(1, ModIntMersenne61::mod()); b = ModIntMersenne61(d(mt)); } return b; } }; template <class T1, class T2> struct PairHash : public std::pair<T1, T2> { using PH = PairHash<T1, T2>; explicit PairHash(T1 x, T2 y) : std::pair<T1, T2>(x, y) {} explicit PairHash(int x) : std::pair<T1, T2>(x, x) {} PairHash() : PairHash(0) {} PH operator+(const PH &x) const { return PH(this->first + x.first, this->second + x.second); } PH operator-(const PH &x) const { return PH(this->first - x.first, this->second - x.second); } PH operator*(const PH &x) const { return PH(this->first * x.first, this->second * x.second); } PH operator+(int x) const { return PH(this->first + x, this->second + x); } static PH randgen(bool force_update = false) { static PH b(0); if (b == PH(0) or force_update) { std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution<int> d(1 << 30); b = PH(T1(d(mt)), T2(d(mt))); } return b; } }; template <class T1, class T2, class T3> struct TupleHash3 : public std::tuple<T1, T2, T3> { using TH = TupleHash3<T1, T2, T3>; explicit TupleHash3(T1 x, T2 y, T3 z) : std::tuple<T1, T2, T3>(x, y, z) {} explicit TupleHash3(int x) : std::tuple<T1, T2, T3>(x, x, x) {} TupleHash3() : TupleHash3(0) {} inline const T1 &v1() const noexcept { return std::get<0>(*this); } inline const T2 &v2() const noexcept { return std::get<1>(*this); } inline const T3 &v3() const noexcept { return std::get<2>(*this); } TH operator+(const TH &x) const { return TH(v1() + x.v1(), v2() + x.v2(), v3() + x.v3()); } TH operator-(const TH &x) const { return TH(v1() - x.v1(), v2() - x.v2(), v3() - x.v3()); } TH operator*(const TH &x) const { return TH(v1() * x.v1(), v2() * x.v2(), v3() * x.v3()); } TH operator+(int x) const { return TH(v1() + x, v2() + x, v3() + x); } static TH randgen(bool force_update = false) { static TH b(0); if (b == TH(0) or force_update) { std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution<int> d(1 << 30); b = TH(T1(d(mt)), T2(d(mt)), T3(d(mt))); } return b; } }; // Rolling Hash (Rabin-Karp), 1dim template <typename V> struct rolling_hash { int N; const V B; std::vector<V> hash; // hash[i] = s[0] * B^(i - 1) + ... + s[i - 1] static std::vector<V> power; // power[i] = B^i void _extend_powvec() { if (power.size() > 1 and power.at(1) != B) power = {V(1)}; while (static_cast<int>(power.size()) <= N) { auto tmp = power.back() * B; power.push_back(tmp); } } template <typename Int> rolling_hash(const std::vector<Int> &s, V b = V::randgen()) : N(s.size()), B(b), hash(N + 1) { for (int i = 0; i < N; i++) hash[i + 1] = hash[i] * B + s[i]; _extend_powvec(); } rolling_hash(const std::string &s = "", V b = V::randgen()) : N(s.size()), B(b), hash(N + 1) { for (int i = 0; i < N; i++) hash[i + 1] = hash[i] * B + s[i]; _extend_powvec(); } void addchar(const char &c) { V hnew = hash[N] * B + c; N++, hash.emplace_back(hnew); _extend_powvec(); } V get(int l, int r) const { // s[l] * B^(r - l - 1) + ... + s[r - 1] return hash[r] - hash[l] * power[r - l]; } int lcplen(int l1, int l2) const { return longest_common_prefix(*this, l1, *this, l2); } }; template <typename V> std::vector<V> rolling_hash<V>::power{V(1)}; // Longest common prerfix between s1[l1, N1) and s2[l2, N2) template <typename T> int longest_common_prefix(const rolling_hash<T> &rh1, int l1, const rolling_hash<T> &rh2, int l2) { int lo = 0, hi = std::min(rh1.N + 1 - l1, rh2.N + 1 - l2); while (hi - lo > 1) { const int c = (lo + hi) / 2; auto h1 = rh1.get(l1, l1 + c), h2 = rh2.get(l2, l2 + c); (h1 == h2 ? lo : hi) = c; } return lo; } // Longest common suffix between s1[0, r1) and s2[0, r2) template <typename T> int longest_common_suffix(const rolling_hash<T> &rh1, int r1, const rolling_hash<T> &rh2, int r2) { int lo = 0, hi = std::min(r1, r2) + 1; while (hi - lo > 1) { const int c = (lo + hi) / 2; auto h1 = rh1.get(r1 - c, r1), h2 = rh2.get(r2 - c, r2); (h1 == h2 ? lo : hi) = c; } return lo; } // Z algorithm (length of longest common prefix for s[0:N] & s[i:N] for each i) // Input: std::vector<T> / std::string of length N // Output: std::vector<int> of size N // Complexity: O(N) // Sample: // - `teletelepathy` -> [13, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0] // Reference: <http://snuke.hatenablog.com/entry/2014/12/03/214243> template <typename T> std::vector<int> z_algorithm(const std::vector<T> &s) { const int N = s.size(); if (N == 0) return {}; std::vector<int> ans(N); ans[0] = N; int i = 1, j = 0; while (i < N) { while (i + j < N and s[j] == s[i + j]) ++j; ans[i] = j; if (!j) { ++i; continue; } int k = 1; while (i + k < N and k + ans[k] < j) ans[i + k] = ans[k], ++k; i += k; j -= k; } return ans; } std::vector<int> z_algorithm(const std::string &s) { const int N = int(s.size()); std::vector<int> v(N); for (int i = 0; i < N; i++) v[i] = s[i]; return z_algorithm(v); } #include <algorithm> #include <cassert> #include <numeric> #include <string> #include <vector> // Suffix array algorithms from AtCoder Library // Document: <https://atcoder.github.io/ac-library/master/document_ja/string.html> namespace internal { std::vector<int> sa_naive(const std::vector<int> &s) { int n = int(s.size()); std::vector<int> sa(n); std::iota(sa.begin(), sa.end(), 0); std::sort(sa.begin(), sa.end(), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++, r++; } return l == n; }); return sa; } std::vector<int> sa_doubling(const std::vector<int> &s) { int n = int(s.size()); std::vector<int> sa(n), rnk = s, tmp(n); std::iota(sa.begin(), sa.end(), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; std::sort(sa.begin(), sa.end(), cmp); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } std::swap(tmp, rnk); } return sa; } // SA-IS, linear-time suffix array construction // Reference: // G. Nong, S. Zhang, and W. H. Chan, // Two Efficient Algorithms for Linear Time Suffix Array Construction template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40> std::vector<int> sa_is(const std::vector<int> &s, int upper) { int n = int(s.size()); if (n == 0) return {}; if (n == 1) return {0}; if (n == 2) { if (s[0] < s[1]) { return {0, 1}; } else { return {1, 0}; } } if (n < THRESHOLD_NAIVE) { return sa_naive(s); } if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); } std::vector<int> sa(n); std::vector<bool> ls(n); for (int i = n - 2; i >= 0; i--) { ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); } std::vector<int> sum_l(upper + 1), sum_s(upper + 1); for (int i = 0; i < n; i++) { if (!ls[i]) { sum_s[s[i]]++; } else { sum_l[s[i] + 1]++; } } for (int i = 0; i <= upper; i++) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const std::vector<int> &lms) { std::fill(sa.begin(), sa.end(), -1); std::vector<int> buf(upper + 1); std::copy(sum_s.begin(), sum_s.end(), buf.begin()); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); sa[buf[s[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int v = sa[i]; if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; } } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); for (int i = n - 1; i >= 0; i--) { int v = sa[i]; if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; } } }; std::vector<int> lms_map(n + 1, -1); int m = 0; for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; } } std::vector<int> lms; lms.reserve(m); for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms.push_back(i); } } induce(lms); if (m) { std::vector<int> sorted_lms; sorted_lms.reserve(m); for (int v : sa) { if (lms_map[v] != -1) sorted_lms.push_back(v); } std::vector<int> rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; for (int i = 1; i < m; i++) { int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) { same = false; } else { while (l < end_l) { if (s[l] != s[r]) { break; } l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper); for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; } induce(sorted_lms); } return sa; } } // namespace internal std::vector<int> suffix_array(const std::vector<int> &s, int upper) { assert(0 <= upper); for (int d : s) { assert(0 <= d && d <= upper); } auto sa = internal::sa_is(s, upper); return sa; } template <class T> std::vector<int> suffix_array(const std::vector<T> &s) { int n = int(s.size()); std::vector<int> idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; }); std::vector<int> s2(n); int now = 0; for (int i = 0; i < n; i++) { if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return internal::sa_is(s2, now); } std::vector<int> suffix_array(const std::string &s) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return internal::sa_is(s2, 255); } // Reference: // T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, // Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its // Applications template <class T> std::vector<int> lcp_array(const std::vector<T> &s, const std::vector<int> &sa) { int n = int(s.size()); assert(n >= 1); std::vector<int> rnk(n); for (int i = 0; i < n; i++) { rnk[sa[i]] = i; } std::vector<int> lcp(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } std::vector<int> lcp_array(const std::string &s, const std::vector<int> &sa) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return lcp_array(s2, sa); } uint32_t rand_int() // XorShift random integer generator { static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } double rand_double() { return (double)rand_int() / UINT32_MAX; } #include <atcoder/segtree> int op(int l, int r) { return std::min(l, r); } int e() { return 0; } string solve(const string &S1, const string &S2) { const int N = S1.size(), M = S2.size(); string S1a = S1; for (auto &c : S1a) { if (c == '?') c = 'a'; } rolling_hash<ModIntMersenne61> rh1a(S1a); rolling_hash<ModIntMersenne61> rh2(S2); const auto z_algo = z_algorithm(S2 + "_" + S1a); const auto sa = suffix_array(S2 + "_" + S1a); dbg(sa); vector<int> sainv(sa.size()); REP(i, sa.size()) sainv.at(sa.at(i)) = i; const auto lcp = lcp_array(S2 + "_" + S1a, sa); atcoder::segtree<int, op, e> lcptree(lcp); REP(_, 1000) rand_int(); vector<mint> hash(26); for (auto &x : hash) x = rand_int(); vector<mint> f, g; for (auto c : S1) { if (c == '?') { f.push_back(0); } else { f.push_back(hash.at(c - 'a')); } } for (auto c : S2) g.push_back(hash.at(c - 'a')); vector<mint> f2 = f; for (auto &x : f2) x *= x; vector<mint> f3 = f2; REP(i, f3.size()) f3.at(i) *= f.at(i); vector<mint> g2 = g; for (auto &x : g2) x *= x; vector<mint> g0(g.size(), 1); reverse(ALL(g0)); reverse(ALL(g)); reverse(ALL(g2)); auto conv = nttconv(g0, f3), c2 = nttconv(g, f2), c3 = nttconv(g2, f); REP(i, conv.size()) conv.at(i) += c3.at(i) - c2.at(i) * 2; // dbg(conv); vector<int> heads; FOR(i, M - 1, N) if (conv.at(i) == 0) heads.push_back(i - (M - 1)); dbg(heads); if (heads.empty()) return "-1"; // -1: same auto solve = [&](int l, int r) -> int { assert(l < r); if (r - l < M) { if (int z = z_algo.at(M + 1 + l); z < r - l) { auto rhs = S1a.at(l + z), lhs = S2.at(z); return lhs < rhs; } if (int z = z_algo.at(r - l); z < M - (r - l)) { auto lhs = S2.at(r - l + z), rhs = S2.at(r - l); return lhs < rhs; } int matchlen = longest_common_prefix(rh1a, l + M, rh2, M - (r - l)); if (matchlen >= r - l) return -1; auto lhs = S1a.at(l + M + matchlen), rhs = S2.at(M - (r - l) + matchlen); return lhs < rhs; } else { int lcur = sainv.at(0), rcur = sainv.at(M + 1 + l); int match = lcptree.prod(min(lcur, rcur), max(lcur, rcur)); if (match < M) { auto lhs = S2.at(match); auto rhs = S1a.at(l + match); return lhs < rhs; } lcur = sainv.at(M + 1 + r), rcur = sainv.at(0); match = lcptree.prod(min(lcur, rcur), max(lcur, rcur)); if (match < M) { auto lhs = S2.at(r + match); auto rhs = S1a.at(match); return lhs < rhs; } return -1; } }; auto comp = [&](int l, int r) -> bool { if (l == r) return false; if (l < r) { auto ret = solve(l, r); if (ret < 0) return false; return ret; } else { auto ret = solve(r, l); if (ret < 0) return false; return ret ^ 1; } }; std::sort(heads.begin(), heads.end(), comp); string ret = S1a.substr(0, heads.front()) + S2 + S1a.substr(heads.front() + S2.size()); return ret; } int main() { int T; cin >> T; while (T--) { int N, M; string S1, S2; cin >> N >> M >> S1 >> S2; cout << solve(S1, S2) << '\n'; } }