結果

問題 No.2231 Surprising Flash!
ユーザー hitonanodehitonanode
提出日時 2023-02-24 22:48:09
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 36,181 bytes
コンパイル時間 5,298 ms
コンパイル使用メモリ 256,544 KB
実行使用メモリ 105,084 KB
最終ジャッジ日時 2024-09-13 08:02:55
合計ジャッジ時間 21,964 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 5 ms
6,812 KB
testcase_02 WA -
testcase_03 AC 307 ms
6,944 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 9 ms
6,940 KB
testcase_09 AC 3 ms
6,944 KB
testcase_10 AC 9 ms
6,940 KB
testcase_11 AC 988 ms
94,136 KB
testcase_12 AC 473 ms
105,084 KB
testcase_13 AC 473 ms
104,956 KB
testcase_14 AC 436 ms
88,048 KB
testcase_15 AC 983 ms
94,132 KB
testcase_16 AC 402 ms
8,684 KB
testcase_17 AC 432 ms
13,860 KB
testcase_18 AC 483 ms
88,320 KB
testcase_19 AC 484 ms
88,308 KB
testcase_20 AC 486 ms
88,316 KB
testcase_21 AC 484 ms
88,180 KB
testcase_22 AC 480 ms
88,200 KB
testcase_23 AC 481 ms
88,312 KB
testcase_24 AC 480 ms
88,372 KB
testcase_25 AC 483 ms
88,164 KB
testcase_26 AC 483 ms
88,176 KB
testcase_27 AC 481 ms
88,164 KB
testcase_28 AC 482 ms
88,160 KB
testcase_29 AC 511 ms
94,844 KB
testcase_30 AC 508 ms
94,860 KB
testcase_31 AC 507 ms
94,840 KB
testcase_32 AC 512 ms
94,972 KB
testcase_33 AC 505 ms
94,848 KB
testcase_34 AC 447 ms
94,136 KB
testcase_35 AC 449 ms
94,136 KB
testcase_36 AC 446 ms
94,260 KB
testcase_37 AC 448 ms
94,260 KB
testcase_38 AC 447 ms
94,132 KB
testcase_39 AC 200 ms
13,888 KB
testcase_40 AC 141 ms
13,800 KB
testcase_41 AC 2 ms
6,940 KB
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif


template <int md> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    MDCONST ModInt() : val_(0) {}
    MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % md + md); }
    MDCONST explicit operator bool() const { return val_ != 0; }
    MDCONST ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    MDCONST ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    MDCONST ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    MDCONST ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) {
        return ModInt()._setval(a % md + x.val_);
    }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) {
        return ModInt()._setval(a % md - x.val_ + md);
    }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.val_ % md);
    }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv().val() % md);
    }
    MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; }
    MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    MDCONST bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }
    MDCONST ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static std::vector<ModInt> facs, facinvs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }
    MDCONST ModInt inv() const {
        if (this->val_ < std::min(md >> 1, 1 << 21)) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    MDCONST ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    MDCONST ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    MDCONST ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();
    }
    MDCONST ModInt nPr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using mint = ModInt<998244353>;

// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
    int n = a.size();
    if (n == 1) return;
    static const int mod = MODINT::mod();
    static const MODINT root = MODINT::get_primitive_root();
    assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);

    static std::vector<MODINT> w{1}, iw{1};
    for (int m = w.size(); m < n / 2; m *= 2) {
        MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
        w.resize(m * 2), iw.resize(m * 2);
        for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
    }

    if (!is_inverse) {
        for (int m = n; m >>= 1;) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m] * w[k];
                    a[i] = x + y, a[i + m] = x - y;
                }
            }
        }
    } else {
        for (int m = 1; m < n; m *= 2) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m];
                    a[i] = x + y, a[i + m] = (x - y) * iw[k];
                }
            }
        }
        int n_inv = MODINT(n).inv().val();
        for (auto &v : a) v *= n_inv;
    }
}
template <int MOD>
std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    std::vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    ntt(ap, false);
    if (a == b)
        bp = ap;
    else
        ntt(bp, false);
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
    using mint2 = ModInt<nttprimes[2]>;
    static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
    static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();
    static const long long m01_inv_m2 = mint2(m01).inv().val();

    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
    return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;
}
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
    if (a.empty() or b.empty()) return {};
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        std::vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::mod();
    if (skip_garner or
        std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
        a.resize(sz), b.resize(sz);
        if (a == b) {
            ntt(a, false);
            b = a;
        } else {
            ntt(a, false), ntt(b, false);
        }
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    } else {
        std::vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val();
        for (int i = 0; i < m; i++) bi[i] = b[i].val();
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++)
            a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);
    }
    return a;
}

template <typename MODINT>
std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {
    return nttconv<MODINT>(a, b, false);
}



// F_p, p = 2^61 - 1
// https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
class ModIntMersenne61 {
    static const long long md = (1LL << 61) - 1;
    long long _v;

    inline unsigned hi() const noexcept { return _v >> 31; }
    inline unsigned lo() const noexcept { return _v & ((1LL << 31) - 1); }

public:
    static long long mod() { return md; }

    ModIntMersenne61() : _v(0) {}
    // 0 <= x < md * 2
    explicit ModIntMersenne61(long long x) : _v(x >= md ? x - md : x) {}

    long long val() const noexcept { return _v; }

    ModIntMersenne61 operator+(const ModIntMersenne61 &x) const {
        return ModIntMersenne61(_v + x._v);
    }

    ModIntMersenne61 operator-(const ModIntMersenne61 &x) const {
        return ModIntMersenne61(_v + md - x._v);
    }

    ModIntMersenne61 operator*(const ModIntMersenne61 &x) const {
        using ull = unsigned long long;

        ull uu = (ull)hi() * x.hi() * 2;
        ull ll = (ull)lo() * x.lo();
        ull lu = (ull)hi() * x.lo() + (ull)lo() * x.hi();

        ull sum = uu + ll + ((lu & ((1ULL << 30) - 1)) << 31) + (lu >> 30);
        ull reduced = (sum >> 61) + (sum & ull(md));
        return ModIntMersenne61(reduced);
    }

    ModIntMersenne61 pow(long long n) const {
        assert(n >= 0);
        ModIntMersenne61 ans(1), tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    ModIntMersenne61 inv() const { return pow(md - 2); }

    ModIntMersenne61 operator/(const ModIntMersenne61 &x) const { return *this * x.inv(); }

    ModIntMersenne61 operator-() const { return ModIntMersenne61(md - _v); }
    ModIntMersenne61 &operator+=(const ModIntMersenne61 &x) { return *this = *this + x; }
    ModIntMersenne61 &operator-=(const ModIntMersenne61 &x) { return *this = *this - x; }
    ModIntMersenne61 &operator*=(const ModIntMersenne61 &x) { return *this = *this * x; }
    ModIntMersenne61 &operator/=(const ModIntMersenne61 &x) { return *this = *this / x; }

    ModIntMersenne61 operator+(unsigned x) const { return ModIntMersenne61(this->_v + x); }

    bool operator==(const ModIntMersenne61 &x) const { return _v == x._v; }
    bool operator!=(const ModIntMersenne61 &x) const { return _v != x._v; }
    bool operator<(const ModIntMersenne61 &x) const { return _v < x._v; } // To use std::map

    template <class OStream> friend OStream &operator<<(OStream &os, const ModIntMersenne61 &x) {
        return os << x._v;
    }

    static ModIntMersenne61 randgen(bool force_update = false) {
        static ModIntMersenne61 b(0);
        if (b == ModIntMersenne61(0) or force_update) {
            std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
            std::uniform_int_distribution<long long> d(1, ModIntMersenne61::mod());
            b = ModIntMersenne61(d(mt));
        }
        return b;
    }
};


template <class T1, class T2> struct PairHash : public std::pair<T1, T2> {
    using PH = PairHash<T1, T2>;
    explicit PairHash(T1 x, T2 y) : std::pair<T1, T2>(x, y) {}
    explicit PairHash(int x) : std::pair<T1, T2>(x, x) {}
    PairHash() : PairHash(0) {}
    PH operator+(const PH &x) const { return PH(this->first + x.first, this->second + x.second); }
    PH operator-(const PH &x) const { return PH(this->first - x.first, this->second - x.second); }
    PH operator*(const PH &x) const { return PH(this->first * x.first, this->second * x.second); }
    PH operator+(int x) const { return PH(this->first + x, this->second + x); }
    static PH randgen(bool force_update = false) {
        static PH b(0);
        if (b == PH(0) or force_update) {
            std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
            std::uniform_int_distribution<int> d(1 << 30);
            b = PH(T1(d(mt)), T2(d(mt)));
        }
        return b;
    }
};

template <class T1, class T2, class T3> struct TupleHash3 : public std::tuple<T1, T2, T3> {
    using TH = TupleHash3<T1, T2, T3>;
    explicit TupleHash3(T1 x, T2 y, T3 z) : std::tuple<T1, T2, T3>(x, y, z) {}
    explicit TupleHash3(int x) : std::tuple<T1, T2, T3>(x, x, x) {}
    TupleHash3() : TupleHash3(0) {}

    inline const T1 &v1() const noexcept { return std::get<0>(*this); }
    inline const T2 &v2() const noexcept { return std::get<1>(*this); }
    inline const T3 &v3() const noexcept { return std::get<2>(*this); }

    TH operator+(const TH &x) const { return TH(v1() + x.v1(), v2() + x.v2(), v3() + x.v3()); }
    TH operator-(const TH &x) const { return TH(v1() - x.v1(), v2() - x.v2(), v3() - x.v3()); }
    TH operator*(const TH &x) const { return TH(v1() * x.v1(), v2() * x.v2(), v3() * x.v3()); }
    TH operator+(int x) const { return TH(v1() + x, v2() + x, v3() + x); }
    static TH randgen(bool force_update = false) {
        static TH b(0);
        if (b == TH(0) or force_update) {
            std::mt19937 mt(std::chrono::steady_clock::now().time_since_epoch().count());
            std::uniform_int_distribution<int> d(1 << 30);
            b = TH(T1(d(mt)), T2(d(mt)), T3(d(mt)));
        }
        return b;
    }
};

// Rolling Hash (Rabin-Karp), 1dim
template <typename V> struct rolling_hash {
    int N;
    const V B;
    std::vector<V> hash;         // hash[i] = s[0] * B^(i - 1) + ... + s[i - 1]
    static std::vector<V> power; // power[i] = B^i
    void _extend_powvec() {
        if (power.size() > 1 and power.at(1) != B) power = {V(1)};
        while (static_cast<int>(power.size()) <= N) {
            auto tmp = power.back() * B;
            power.push_back(tmp);
        }
    }
    template <typename Int>
    rolling_hash(const std::vector<Int> &s, V b = V::randgen()) : N(s.size()), B(b), hash(N + 1) {
        for (int i = 0; i < N; i++) hash[i + 1] = hash[i] * B + s[i];
        _extend_powvec();
    }
    rolling_hash(const std::string &s = "", V b = V::randgen()) : N(s.size()), B(b), hash(N + 1) {
        for (int i = 0; i < N; i++) hash[i + 1] = hash[i] * B + s[i];
        _extend_powvec();
    }
    void addchar(const char &c) {
        V hnew = hash[N] * B + c;
        N++, hash.emplace_back(hnew);
        _extend_powvec();
    }
    V get(int l, int r) const { // s[l] * B^(r - l - 1) + ... + s[r - 1]
        return hash[r] - hash[l] * power[r - l];
    }
    int lcplen(int l1, int l2) const { return longest_common_prefix(*this, l1, *this, l2); }
};
template <typename V> std::vector<V> rolling_hash<V>::power{V(1)};

// Longest common prerfix between s1[l1, N1) and s2[l2, N2)
template <typename T>
int longest_common_prefix(const rolling_hash<T> &rh1, int l1, const rolling_hash<T> &rh2, int l2) {
    int lo = 0, hi = std::min(rh1.N + 1 - l1, rh2.N + 1 - l2);
    while (hi - lo > 1) {
        const int c = (lo + hi) / 2;
        auto h1 = rh1.get(l1, l1 + c), h2 = rh2.get(l2, l2 + c);
        (h1 == h2 ? lo : hi) = c;
    }
    return lo;
}
// Longest common suffix between s1[0, r1) and s2[0, r2)
template <typename T>
int longest_common_suffix(const rolling_hash<T> &rh1, int r1, const rolling_hash<T> &rh2, int r2) {
    int lo = 0, hi = std::min(r1, r2) + 1;
    while (hi - lo > 1) {
        const int c = (lo + hi) / 2;
        auto h1 = rh1.get(r1 - c, r1), h2 = rh2.get(r2 - c, r2);
        (h1 == h2 ? lo : hi) = c;
    }
    return lo;
}


// Z algorithm (length of longest common prefix for s[0:N] & s[i:N] for each i)
// Input: std::vector<T> / std::string of length N
// Output: std::vector<int> of size N
// Complexity: O(N)
// Sample:
// - `teletelepathy` -> [13, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0]
// Reference: <http://snuke.hatenablog.com/entry/2014/12/03/214243>
template <typename T> std::vector<int> z_algorithm(const std::vector<T> &s) {
    const int N = s.size();
    if (N == 0) return {};
    std::vector<int> ans(N);
    ans[0] = N;
    int i = 1, j = 0;
    while (i < N) {
        while (i + j < N and s[j] == s[i + j]) ++j;
        ans[i] = j;
        if (!j) {
            ++i;
            continue;
        }
        int k = 1;
        while (i + k < N and k + ans[k] < j) ans[i + k] = ans[k], ++k;
        i += k;
        j -= k;
    }
    return ans;
}

std::vector<int> z_algorithm(const std::string &s) {
    const int N = int(s.size());
    std::vector<int> v(N);
    for (int i = 0; i < N; i++) v[i] = s[i];
    return z_algorithm(v);
}

#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

// Suffix array algorithms from AtCoder Library
// Document: <https://atcoder.github.io/ac-library/master/document_ja/string.html>
namespace internal {

std::vector<int> sa_naive(const std::vector<int> &s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++, r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int> &s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int> &s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) { return sa_naive(s); }
    if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int> &lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) { lms.push_back(i); }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) { break; }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; }
        induce(sorted_lms);
    }
    return sa;
}

} // namespace internal

std::vector<int> suffix_array(const std::vector<int> &s, int upper) {
    assert(0 <= upper);
    for (int d : s) { assert(0 <= d && d <= upper); }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T> &s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string &s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) { s2[i] = s[i]; }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T> &s, const std::vector<int> &sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) { rnk[sa[i]] = i; }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string &s, const std::vector<int> &sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) { s2[i] = s[i]; }
    return lcp_array(s2, sa);
}


uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }

#include <atcoder/segtree>
int op(int l, int r) { return std::min(l, r); }
int e() { return 0; }

string solve(const string &S1, const string &S2) {
    const int N = S1.size(), M = S2.size();
    string S1a = S1;
    for (auto &c : S1a) {
        if (c == '?') c = 'a';
    }
    rolling_hash<ModIntMersenne61> rh1a(S1a);
    rolling_hash<ModIntMersenne61> rh2(S2);

    const auto z_algo = z_algorithm(S2 + "_" + S1a);

    const auto sa = suffix_array(S2 + "_" + S1a);
    dbg(sa);
    vector<int> sainv(sa.size());
    REP(i, sa.size()) sainv.at(sa.at(i)) = i;

    const auto lcp = lcp_array(S2 + "_" + S1a, sa);
    atcoder::segtree<int, op, e> lcptree(lcp);

    REP(_, 1000) rand_int();
    vector<mint> hash(26);
    for (auto &x : hash) x = rand_int();
    vector<mint> f, g;
    for (auto c : S1) {
        if (c == '?') {
            f.push_back(0);
        } else {
            f.push_back(hash.at(c - 'a'));
        }
    }
    for (auto c : S2) g.push_back(hash.at(c - 'a'));

    vector<mint> f2 = f;
    for (auto &x : f2) x *= x;
    vector<mint> f3 = f2;
    REP(i, f3.size()) f3.at(i) *= f.at(i);
    vector<mint> g2 = g;
    for (auto &x : g2) x *= x;
    vector<mint> g0(g.size(), 1);
    reverse(ALL(g0));
    reverse(ALL(g));
    reverse(ALL(g2));

    auto conv = nttconv(g0, f3), c2 = nttconv(g, f2), c3 = nttconv(g2, f);
    REP(i, conv.size()) conv.at(i) += c3.at(i) - c2.at(i) * 2;
    // dbg(conv);
    vector<int> heads;
    FOR(i, M - 1, N) if (conv.at(i) == 0) heads.push_back(i - (M - 1));
    dbg(heads);
    if (heads.empty()) return "-1";

    // -1: same
    auto solve = [&](int l, int r) -> int {
        assert(l < r);
        if (r - l < M) {

            if (int z = z_algo.at(M + 1 + l); z < r - l) {
                auto rhs = S1a.at(l + z), lhs = S2.at(z);
                return lhs < rhs;
            }
            if (int z = z_algo.at(r - l); z < M - (r - l)) {
                auto lhs = S2.at(r - l + z), rhs = S2.at(r - l);
                return lhs < rhs;
            }
            int matchlen = longest_common_prefix(rh1a, l + M, rh2, M - (r - l));
            if (matchlen >= r - l) return -1;
            auto lhs = S1a.at(l + M + matchlen), rhs = S2.at(M - (r - l) + matchlen);
            return lhs < rhs;
        } else {
            int lcur = sainv.at(0), rcur = sainv.at(M + 1 + l);
            int match = lcptree.prod(min(lcur, rcur), max(lcur, rcur));
            if (match < M) {
                auto lhs = S2.at(match);
                auto rhs = S1a.at(l + match);
                return lhs < rhs;
            }

            lcur = sainv.at(M + 1 + r), rcur = sainv.at(0);
            match = lcptree.prod(min(lcur, rcur), max(lcur, rcur));
            if (match < M) {
                auto lhs = S2.at(r + match);
                auto rhs = S1a.at(match);
                return lhs < rhs;
            }
            return -1;
        }
    };

    auto comp = [&](int l, int r) -> bool {
        if (l == r) return false;
        if (l < r) {
            auto ret = solve(l, r);
            if (ret < 0) return false;
            return ret;
        } else {
            auto ret = solve(r, l);
            if (ret < 0) return false;
            return ret ^ 1;
        }
    };

    std::sort(heads.begin(), heads.end(), comp);
    string ret = S1a.substr(0, heads.front()) + S2 + S1a.substr(heads.front() + S2.size());
    return ret;
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        int N, M;
        string S1, S2;
        cin >> N >> M >> S1 >> S2;
        cout << solve(S1, S2) << '\n';
    }
}
0