結果
| 問題 |
No.2231 Surprising Flash!
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2023-02-24 23:10:00 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 15,994 bytes |
| コンパイル時間 | 20,822 ms |
| コンパイル使用メモリ | 335,916 KB |
| 最終ジャッジ日時 | 2025-02-10 22:23:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 1 |
| other | AC * 9 WA * 9 RE * 26 |
ソースコード
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#line 1 "template/template.hpp"
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for (int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for (T &in: v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for (auto &e: t) fill_v(e, v);
}
template< typename F >
struct FixPoint: F {
explicit FixPoint(F &&f): F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
static vector< Mint > roots, iroots, rate3, irate3;
static int max_base;
NumberTheoreticTransformFriendlyModInt() = default;
static void init() {
if (roots.empty()) {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
Mint root = 2;
while (root.pow((mod - 1) >> 1) == 1) {
root += 1;
}
assert(root.pow(mod - 1) == 1);
roots.resize(max_base + 1);
iroots.resize(max_base + 1);
rate3.resize(max_base + 1);
irate3.resize(max_base + 1);
roots[max_base] = root.pow((mod - 1) >> max_base);
iroots[max_base] = Mint(1) / roots[max_base];
for (int i = max_base - 1; i >= 0; i--) {
roots[i] = roots[i + 1] * roots[i + 1];
iroots[i] = iroots[i + 1] * iroots[i + 1];
}
{
Mint prod = 1, iprod = 1;
for (int i = 0; i <= max_base - 3; i++) {
rate3[i] = roots[i + 3] * prod;
irate3[i] = iroots[i + 3] * iprod;
prod *= iroots[i + 3];
iprod *= roots[i + 3];
}
}
}
}
static void ntt(vector< Mint > &a) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = 0;
Mint imag = roots[2];
if (h & 1) {
int p = 1 << (h - 1);
Mint rot = 1;
for (int i = 0; i < p; i++) {
auto r = a[i + p];
a[i + p] = a[i] - r;
a[i] += r;
}
len++;
}
for (; len + 1 < h; len += 2) {
int p = 1 << (h - len - 2);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i] = a0a2 + a1a3;
a[i + 1 * p] = a0a2 - a1a3;
a[i + 2 * p] = a0na2 + a1na3imag;
a[i + 3 * p] = a0na2 - a1na3imag;
}
}
Mint rot = rate3[0];
for (int s = 1; s < (1 << len); s++) {
int offset = s << (h - len);
Mint rot2 = rot * rot;
Mint rot3 = rot2 * rot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + p] * rot;
auto a2 = a[i + offset + 2 * p] * rot2;
auto a3 = a[i + offset + 3 * p] * rot3;
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i + offset] = a0a2 + a1a3;
a[i + offset + 1 * p] = a0a2 - a1a3;
a[i + offset + 2 * p] = a0na2 + a1na3imag;
a[i + offset + 3 * p] = a0na2 - a1na3imag;
}
rot *= rate3[__builtin_ctz(~s)];
}
}
}
static void intt(vector< Mint > &a, bool f = true) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = h;
Mint iimag = iroots[2];
for (; len > 1; len -= 2) {
int p = 1 << (h - len);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + 1 * p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i] = a0a1 + a2a3;
a[i + 1 * p] = (a0na1 + a2na3iimag);
a[i + 2 * p] = (a0a1 - a2a3);
a[i + 3 * p] = (a0na1 - a2na3iimag);
}
}
Mint irot = irate3[0];
for (int s = 1; s < (1 << (len - 2)); s++) {
int offset = s << (h - len + 2);
Mint irot2 = irot * irot;
Mint irot3 = irot2 * irot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + 1 * p];
auto a2 = a[i + offset + 2 * p];
auto a3 = a[i + offset + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i + offset] = a0a1 + a2a3;
a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
}
irot *= irate3[__builtin_ctz(~s)];
}
}
if (len >= 1) {
int p = 1 << (h - 1);
for (int i = 0; i < p; i++) {
auto ajp = a[i] - a[i + p];
a[i] += a[i + p];
a[i + p] = ajp;
}
}
if (f) {
Mint inv_sz = Mint(1) / n;
for (int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::roots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::iroots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::rate3 = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::irate3 = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
MontgomeryModInt(): x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod) < 0) x += 2 * mod;
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod;
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }
bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }
u32 get() const {
u32 ret = reduce(x);
return ret >= mod ? ret - mod : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inverse() const {
return pow(mod - 2);
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static u32 get_mod() { return mod; }
};
using modint = MontgomeryModInt< mod >;
std::vector< bool > wildcard_pattern_matching(const string &p,
const string &s) {
using ll = long long;
using usize = std::size_t;
using mint = modint;
const usize n = p.size();
const usize m = s.size();
assert(n + m - 1 <= (mod - 1 & ~(mod - 1) + 1));
assert(std::all_of(p.begin(), p.end(), [](int x) { return -1 <= x < mod; }));
assert(std::all_of(s.begin(), s.end(), [](int x) { return -1 <= x < mod; }));
{
const int max = std::max(*std::max_element(p.begin(), p.end()),
*std::max_element(s.begin(), s.end()));
assert(ll(max) *max < mod);
assert(ll(max) *max * p.size() < mod);
}
std::vector< mint > sum(m - n + 1, mint(0));
const auto add = [&](const auto f, const auto g) {
std::vector< mint > x(n), y(m);
for (usize i = 0; i != n; ++i) {
x[i] = f(p[n - 1 - i]);
}
for (usize i = 0; i != m; ++i) {
y[i] = g(s[i]);
}
const auto z = NumberTheoreticTransformFriendlyModInt< modint >::multiply(x, y);
for (usize i = 0; i != m - n + 1; ++i) {
sum[i] += z[n - 1 + i];
}
};
add([](const int v) { return ll(v != -1) * v * v; },
[](const int v) { return int(v != -1); });
add([](const int v) { return -2 * int(v != -1) * v; },
[](const int v) { return int(v != -1) * v; });
add([](const int v) { return int(v != -1); },
[](const int v) { return ll(v != -1) * v * v; });
std::vector< bool > res(m - n + 1);
for (usize i = 0; i != m - n + 1; ++i) {
res[i] = sum[i].get() == 0;
}
return res;
}
#line 1 "string/rolling-hash.hpp"
/**
* @brief Rolling-Hash(ローリングハッシュ)
* @see https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
* @docs docs/rolling-hash.md
*/
struct RollingHash {
static const uint64_t mod = (1ull << 61ull) - 1;
using uint128_t = __uint128_t;
vector< uint64_t > power;
const uint64_t base;
static inline uint64_t add(uint64_t a, uint64_t b) {
if ((a += b) >= mod) a -= mod;
return a;
}
static inline uint64_t mul(uint64_t a, uint64_t b) {
uint128_t c = (uint128_t) a * b;
return add(c >> 61, c & mod);
}
static inline uint64_t generate_base() {
mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution< uint64_t > rand(1, RollingHash::mod - 1);
return rand(mt);
}
inline void expand(size_t sz) {
if (power.size() < sz + 1) {
int pre_sz = (int) power.size();
power.resize(sz + 1);
for (int i = pre_sz - 1; i < sz; i++) {
power[i + 1] = mul(power[i], base);
}
}
}
explicit RollingHash(uint64_t base = generate_base()): base(base), power{1} {}
vector< uint64_t > build(const string &s) const {
int sz = s.size();
vector< uint64_t > hashed(sz + 1);
for (int i = 0; i < sz; i++) {
hashed[i + 1] = add(mul(hashed[i], base), s[i]);
}
return hashed;
}
template< typename T >
vector< uint64_t > build(const vector< T > &s) const {
int sz = s.size();
vector< uint64_t > hashed(sz + 1);
for (int i = 0; i < sz; i++) {
hashed[i + 1] = add(mul(hashed[i], base), s[i]);
}
return hashed;
}
uint64_t query(const vector< uint64_t > &s, int l, int r) {
expand(r - l);
return add(s[r], mod - mul(s[l], power[r - l]));
}
uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) {
expand(h2len);
return add(mul(h1, power[h2len]), h2);
}
int lcp(const vector< uint64_t > &a, int l1, int r1, const vector< uint64_t > &b, int l2, int r2) {
int len = min(r1 - l1, r2 - l2);
int low = 0, high = len + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid)) low = mid;
else high = mid;
}
return low;
}
};
void beet() {
int N, M;
cin >> N >> M;
string X, Y;
cin >> X >> Y;
for (auto &p: X) if (p == '?') p = -1;
auto Z = wildcard_pattern_matching(Y, X);
bool f = false;
for (auto z: Z) f |= z;
if (!f) {
cout << -1 << "\n";
return;
}
RollingHash hashed;
string XA = X;
for (auto &x: XA) if (x == -1) x = 'a';
auto xh = hashed.build(XA);
auto yh = hashed.build(Y);
int l = -1;
for (int i = 0; i < (int) Z.size(); i++) {
if (Z[i]) {
if (l == -1) {
l = i;
continue;
}
// [0, p) Y [p + M, )
auto queryRange = [&](int p, int r) {
uint64_t lv = hashed.query(xh, 0, min(p, r));
r -= p;
if (r <= 0) return lv;
lv = hashed.combine(lv, hashed.query(yh, 0, min(M, r)), min(M, r));
r -= M;
if (r <= 0) return lv;
//lv = hashed.combine(lv, hashed.query(xh, p + M, min(N, p + M + r)), min(N, p + M + r));
return lv;
};
auto queryGet = [&](int p, int r) {
if (r - p < 0) {
return XA[r];
}
r -= p;
if (r - M < 0) {
return Y[r];
}
r -= M;
if(p + M + r >= N) return char(253);
return XA[p + M + r];
};
int low = 0, high = N + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (queryRange(i, mid) == queryRange(l, mid)) low = mid;
else high = mid;
}
/*
if (low < N and queryGet(i, low) < queryGet(l, low)) {
l = i;
}*/
}
}
for (int k = 0; k < M; k++) {
X[k + l] = Y[k];
}
for (auto &x: X) if (x == -1) x = 'a';
cout << X << "\n";
}
int main() {
int T;
cin >> T;
while (T--) {
beet();
}
}
ei1333333