結果

問題 No.2396 等差二項展開
ユーザー ecotteaecottea
提出日時 2023-02-25 01:46:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,118 ms / 6,000 ms
コード長 12,134 bytes
コンパイル時間 4,935 ms
コンパイル使用メモリ 278,444 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-06 16:29:34
合計ジャッジ時間 32,808 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 3 ms
6,820 KB
testcase_15 AC 29 ms
6,816 KB
testcase_16 AC 432 ms
6,820 KB
testcase_17 AC 2,069 ms
6,816 KB
testcase_18 AC 2,968 ms
6,816 KB
testcase_19 AC 3,118 ms
6,820 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,820 KB
testcase_22 AC 2 ms
6,820 KB
testcase_23 AC 1,610 ms
6,816 KB
testcase_24 AC 2,353 ms
6,820 KB
testcase_25 AC 2,874 ms
6,816 KB
testcase_26 AC 2,185 ms
6,816 KB
testcase_27 AC 2,345 ms
6,820 KB
testcase_28 AC 2,678 ms
6,816 KB
testcase_29 AC 2,348 ms
6,816 KB
testcase_30 AC 1,749 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
//using mint = modint998244353;
using mint = modint; // mint::set_mod(m);

istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif


//【畳込み】O(n m)
/*
* a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す.
*/
vm naive_convolution(const vm& a, const vm& b) {
	// verify : https://atcoder.jp/contests/abc214/tasks/abc214_g

	int n = sz(a), m = sz(b);

	// c[i] = Σj∈[0..i] a[j] b[i-j]  (∀i∈[0..n+m-1))
	vm c(n + m - 1);
	rep(i, n + m - 1) {
		repi(j, max(i - (m - 1), 0), min(i, n - 1)) {
			c[i] += a[j] * b[i - j];
		}
	}

	return c;
}


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n k)(k : g の項数)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n k)(k : g の項数)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d) : O(d)
*	単項式 z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* MFPS power_mod(MFPS f, ll d, MFPS g) : O(m log m log d) (m = deg g)
*	f(z)^d mod g(z) を返す.
*/
struct MFPS {
	using SMFPS = vector<pair<int, mint>>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = naive_convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(const mint& c0) : n(1), c({ c0 }) {}
	MFPS(const int& c0) : n(1), c({ mint(c0) }) {}
	MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	// 比較
	bool operator==(const MFPS& g) const { return c == g.c; }
	bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	mint const& operator[](int i) const { return c[i]; }
	mint& operator[](int i) { return c[i]; }

	// 次数
	int deg() const { return n - 1; }
	int size() const { return n; }

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	MFPS inv(int d) const {
		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k *= 2) {
			g = (2 - *this * g) * g;
			g.resize(2 * k);
		}

		return g.resize(d);
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 係数反転
	MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 余り付き除算
	MFPS quotient(const MFPS& g) const {
		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}

	MFPS reminder(const MFPS& g) const {
		return (*this - this->quotient(g) * g).resize(g.n - 1);
	}

	pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize(g.n - 1);
		return res;
	}

	// 累乗の剰余
	friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) {
		MFPS res(1), pow2(f);
		while (d > 0) {
			if (d & 1LL) res = (res * pow2).reminder(g);
			pow2 = (pow2 * pow2).reminder(g);
			d /= 2;
		}
		return res;
	}
};


int main() {
	input_from_file("input.txt");
//	output_to_file("output.txt");
	
	ll n, m; int l, k, b;
	cin >> n >> m >> l >> k >> b;

	mint::set_mod(b);

	// l = 1 のときは二項定理で OK
	if (l == 1) EXIT(mint(1 + m).pow(n));

	// バグったので一旦コメントアウト.代わりに直接中身を書き換えた.
//	MFPS::set_conv(naive_convolution);

	MFPS f(vm{1, 1}), g(-mint(m), l + 1); g[l] = 1;
	f = power_mod(f, n, g);
	
	cout << f[k] << endl;
}
0